Advertisement

Hydrobiologia

, Volume 659, Issue 1, pp 37–48 | Cite as

Perkinsozoa, a well-known marine protozoan flagellate parasite group, newly identified in lacustrine systems: a review

  • Jean-François Mangot
  • Didier Debroas
  • Isabelle Domaizon
DISREGARDED DIVERSITY AND ECOLOGICAL POTENTIALS Review Article

Abstract

The recurrent detection of parasitic zoospores among aquatic heterotrophic flagellates (HFs) has recently modified our view of how the microbial loop is organized, and called into question the role of eukaryotic parasites in the aquatic trophic food web. The Perkinsozoa group, already known to play a significant role as parasite in marine systems, is of special interest here, since it has recently been detected in several lakes by constructing clone libraries. In marine systems, this group is known to consist solely of intracellular parasites of molluscs or phytoplanktonic species, but their hosts in freshwater environments are still unknown, and little is yet known about their functional importance in planktonic systems. This review summarizes the main information currently available about Perkinsozoa through a description of their phylogenetic position, their life cycles, and regulatory factors, and the consideration of the specificities of their hosts in marine systems, and the few data recently acquired in lakes.

Keywords

Perkinsozoa Eukaryotic parasites Marine and lacustrine systems 

References

  1. Abollo, E., S. M. Casas, G. Ceschia & A. Villalba, 2006. Differential diagnosis of Perkinsus species by polymerase chain reaction-restriction fragment length polymorphism assay. Molecular and Cellular Probes 20: 323–329.CrossRefPubMedGoogle Scholar
  2. Arias-Gonzáles, J. E. & S. Morand, 2006. Trophic functioning with parasites: a new insight for ecosystem analysis. Marine Ecology Progress Series 320: 43–53.CrossRefGoogle Scholar
  3. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water column microbes in the sea. Marine Ecology Progress Series 10: 257–263.CrossRefGoogle Scholar
  4. Azevedo, C., 1989. Fine structure of Perkinsus atlanticus n. sp. (Apicomplexa, Perkinsea) parasite of the clam Ruditapes decussatus from Portugal. Journal of Parasitology 75: 627–635.PubMedGoogle Scholar
  5. Bettarel, Y., C. Amblard, T. Sime-Ngando, J. F. Carrias, D. Sargos, F. Garabetian & P. Lavandier, 2003. Viral lysis, flagellate grazing potential and bacterial production in Lake Pavin. Microbial Ecology 45: 119–127.CrossRefPubMedGoogle Scholar
  6. Bettarel, Y., T. Sime-Ngando, C. Amblard & J. Dolan, 2004. Viral activity in two contrasting lake ecosystems. Applied and Environmental Microbiology 70: 2941–2951.CrossRefPubMedGoogle Scholar
  7. Blackbourn, J., S. M. Bower & G. R. Meyer, 1998. Perkinsus qugwudi sp. nov. (incertae sedis), a pathogenic protozoan parasite of Japanese scallops, Patinopecten yessoensis, cultured in British Columbia, Canada. Canadian Journal of Zoology 76: 942–953.CrossRefGoogle Scholar
  8. Brugerolle, G., 2002. Cryptophagus subtilis: a new parasite of cryptophytes affiliated with the Perkinsozoa lineage. European Journal of Protistology 37: 379–390.CrossRefGoogle Scholar
  9. Brugerolle, G., 2003. Apicomplexan parasite Cryptophagus renamed Rastrimonas gen. nov. European Journal of Protistology 39: 101.CrossRefGoogle Scholar
  10. Brussaard, C. P. D., 2004. Viral control of phytoplankton populations – a review. The Journal of Eukaryotic Microbiology 51: 125–138.CrossRefPubMedGoogle Scholar
  11. Burreson, E. M., R. S. Alvarez, V. Vidal, M. Leopoldina & A. Macedo, 1994. Perkinsus marinus (Apicomplexa) as a potential source of oyster Crassostrea virginica mortality in coastal lagoons of Tabasco, Mexico. Diseases of Aquatic Organisms 20: 73–82.CrossRefGoogle Scholar
  12. Bushek, D., C. F. Dungan & A. J. Lewitus, 2002. Serological affinities of the Oyster Pathogen Perkinsus marinus (Apicomplexa) with some dinoflagellates (Dinophyceae). The Journal of Eukaryotic Microbiology 49: 11–16.CrossRefPubMedGoogle Scholar
  13. Cáceres-Martínez, J., R. Vásquez-Yeomans, G. Padilla-Lardizábal, M. A. del Río & Portilla., 2008. Perkinsus marinus in pleasure oyster Crassostrea corteziensis from Nayarit, Pacific coast of México. Journal of Invertebrate Pathology 99: 66–73.CrossRefPubMedGoogle Scholar
  14. Canter, H. M. & J. W. G. Lund, 1969. The parasitism of planktonic desmids by Fungi. Plant Systematics and Evolution 116: 351–377.CrossRefGoogle Scholar
  15. Casas, S. M., K. S. Reece, Y. Li, J. A. Moss, A. Villalba & J. F. La Peyre, 2008. Continuous culture of Perkinsus mediterraneus, a parasite of the European Flat Oyster Ostrea edulis, and characterization of its morphology, propagation, and extracellular proteins in vitro. The Journal of Eukaryotic Microbiology 55: 34–43.CrossRefPubMedGoogle Scholar
  16. Cavalier-Smith, T., 1993. Kingdom protozoa and its 18 phyla. Microbiological Reviews 57: 953–994.PubMedGoogle Scholar
  17. Cavalier-Smith, T. & E. Y. Chao, 2003. Phylogeny and classification of phylum Cercozoa (Protozoa). Protist 154: 341–358.CrossRefPubMedGoogle Scholar
  18. Chambouvet, A., P. Morin, D. Marie & L. Guillou, 2008. Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science 322: 1254–1257.CrossRefPubMedGoogle Scholar
  19. Cole, J. J., 1982. Interactions between bacteria and algae in aquatic ecosystems. Annual Review of Ecology, Evolution and Systematics 13: 291–314.CrossRefGoogle Scholar
  20. Coss, C. A., J. A. F. Robledo & G. R. Vasta, 2001. Fine structure of clonally propagated in vitro life stages of a Perkinsus sp. isolated from the Baltic Clam Macoma balthica. The Journal of Eukaryotic Microbiology 48: 38–51.CrossRefPubMedGoogle Scholar
  21. Delgado, M. & A. P. Camacho, 2007. Influence of temperature on gonadal development of Ruditapes philippinarum (Adams and Reeve, 1850) with special reference to ingested food and energy balance. Aquaculture 264: 398–407.CrossRefGoogle Scholar
  22. Díez, B., C. Pedrós-Alió, T. L. Marsh & R. Massana, 2001. Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Applied in Environmental Microbiology 67: 2942–2951.CrossRefGoogle Scholar
  23. Elandaloussi, L. M., N. Carrasco, A. Roque, K. Andree & M. D. Furones, 2009. First record of Perkinsus olseni, a protozoan parasite infecting the commercial clam Ruditapes decussatus in Spanish Mediterranean waters. Journal of Invertebrate Pathology 100: 50–53.CrossRefPubMedGoogle Scholar
  24. Embley, T. M., B. J. Finlay, R. H. Thomas & P. L. Dyal, 1992. The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus pdueformis and its archaeobacterial endosymbiont. Journal of General Microbiology 138: 1479–1487.PubMedGoogle Scholar
  25. Erard-Le Denn, E., M. J. Chrétiennot-Dinet & I. Probert, 2000. First report of parasitism on the toxic Dinoflagellate Alexandrium minutum Halim. Estuarine, Coastal and Shelf Science 50: 109–113.CrossRefGoogle Scholar
  26. Fernández-Robledo, J. A., E. J. Schott & G. R. Vasta, 2008. Perkinsus marinus superoxide dismutase 2 (PmSOD2) localizes to single-membrane subcellular compartments. Biochemical and Biophysical Research Communications 375: 215–219.CrossRefPubMedGoogle Scholar
  27. Figueroa, R. I., E. Garcés, R. Massana & J. Camp, 2008. Description, host-specificity, and strain selectivity of the dinoflagellate parasite Parvilucifera sinerae sp. nov. (Perkinsozoa). Protist 159: 563–578.CrossRefPubMedGoogle Scholar
  28. Fuhrman, J. A., 1999. Marine viruses and their biogeochemical and ecological effects. Nature 399: 541–548.CrossRefPubMedGoogle Scholar
  29. Gestal, C., B. Novoa, D. Posada, A. Figueras & C. Azevedo, 2006. Perkinsoide chabelardi n. gen., a protozoan parasite with an intermediate evolutionary position: possible cause of the decrease of sardine fisheries? Environmental Microbiology 8: 1105–1114.CrossRefPubMedGoogle Scholar
  30. Gisselson, L. A., P. Carlsson, E. Granéli & J. Pallon, 2002. Dinophysis blooms in the deep euphotic zone of the Baltic Sea: do they grow in the dark? Harmful Algae 1: 401–418.CrossRefGoogle Scholar
  31. Gullian-Klanian, M., J. A. Herrera-Silveira, R. Rodriguez-Canul & L. Aguirre-Macedo, 2008. Factors associated with the prevalence of Perkinsus marinus in Crassostrea virginica from the southern Gulf of Mexico. Diseases of Aquatic Organisms 79: 237–247.CrossRefPubMedGoogle Scholar
  32. Goldstein, S., 1960. Physiology of aquatic fungi: nutrition of two monocentric chytrids. Journal of Bacteriology 80: 701–707.PubMedGoogle Scholar
  33. Groisillier, A., R. Massana, K. Valentin, D. Vaulot & L. Guillou, 2006. Genetic diversity and habitats of two enigmatic marine alveolate lineages. Aquatic Microbial Ecology 42: 277–291.CrossRefGoogle Scholar
  34. Guillou, L., M. Viprey, A. Chambouvet, R. M. Welsh, A. R. Kirkham, R. Massana, D. J. Scanlan & A. Z. Worden, 2008. Occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environmental Microbiology 10: 3349–3365.CrossRefPubMedGoogle Scholar
  35. Hakimi, M. A. & K. W. Deitsch, 2007. Epigenetics in Apicomplexa: control of gene expression during cell cycle progression, differentiation and antigenic variation. Current Opinion in Microbiology 10: 357–362.CrossRefPubMedGoogle Scholar
  36. Holfeld, H., 1998. Fungal infections of the phytoplankton: seasonality, minimal host density, and specificity in a mesotrophic lake. New Phytologist 138: 507–517.CrossRefGoogle Scholar
  37. Ibelings, B. W., A. De Bruin, M. Kagami, M. Rijkeboer, M. Brehm & E. Van Donk, 2004. Review: host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). Journal of Phycology 40: 437–453.CrossRefGoogle Scholar
  38. Johansson, M. & D. W. Coats, 2002. Ciliate grazing on the parasite Amoebophrya sp. decreases infection of the red-tide dinoflagellate Akashiwo sanguinea. Aquatic Microbial Ecology 28: 69–78.CrossRefGoogle Scholar
  39. Kagami, M., E. Van Donk, A. De Bruin, M. Rijkeboer & B. W. Ibelings, 2004. Daphnia can protect diatoms from fungal parasitism. The American Society of Limnology and Oceanography 49: 680–685.CrossRefGoogle Scholar
  40. Kagami M., N. R. Helmsing & E. van Donk, 2010. Parasitic chytrids could promote copepod survival by mediating material transfer from inedible diatoms. Hydrobiologia. doi: 10.1007/s10750-010-0274-z.
  41. Lafferty, K. D., A. P. Dobson & A. M. Kuris, 2006. Parasites dominate food web links. PNAS 103: 11211–11216.CrossRefPubMedGoogle Scholar
  42. Lafferty, K. D., S. Allesina, M. Arim, C. J. Briggs, G. De Leo, A. P. Dobson, J. A. Dunne, P. T. J. Johnson, A. M. Kuris, D. J. Marcogliese, N. D. Martinez, J. Memmott, P. A. Marquet, J. P. McLaughlin, E. A. Mordecai, M. Pascual, R. Poulin & D. W. Thieltges, 2008. Parasites in food webs: the ultimate missing links. Ecology Letters 11: 533–546.CrossRefPubMedGoogle Scholar
  43. Leander, B. S. & P. J. Keeling, 2003. Morphostasis in alveolate evolution. Trends in Ecology and Evolution 18: 395–402.CrossRefGoogle Scholar
  44. Leander, B. S. & M. Hoppenrath, 2008. Ultrastructure of a novel tube-forming, intracellular parasite of dinoflagellates: Parvilucifera prorocentri sp. nov. (Alveolata, Myzozoa). European Journal of Protistology 44: 55–70.CrossRefPubMedGoogle Scholar
  45. Lefèvre, E., C. Bardot, C. Noël, J. F. Carrias, E. Viscogliosi, C. Amblard & T. Simé-Ngando, 2007. Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environmental Microbiology 9: 61–71.CrossRefPubMedGoogle Scholar
  46. Lefèvre, E., B. Roussel, C. Amblard & T. Simé-Ngando, 2008. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS ONE 3: 2324–2333.CrossRefGoogle Scholar
  47. Lefranc, M., A. Thénot, C. Lepère & D. Debroas, 2005. Genetic diversity of small eukaryotes in lakes differing by their trophic status. Applied in Environmental Microbiology 71: 5935–5942.CrossRefGoogle Scholar
  48. Lepère, C., D. Boucher, L. Jardillier, I. Domaizon & D. Debroas, 2006. Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem (Lake Pavin). Applied in Environmental Microbiology 72: 2971–2981.CrossRefGoogle Scholar
  49. Lepère, C., I. Domaizon & D. Debroas, 2008. Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. Applied in Environmental Microbiology 74: 2940–2949.CrossRefGoogle Scholar
  50. Lester, R. J. G., C. L. Goggin & K. B. Sewell, 1990. Perkinsus in Australia. In Cheng, T. C. & F. O. Perkins (eds), Pathology in Marine Aquaculture. Academic Press, New York: 189–199.Google Scholar
  51. Levine, N. D., 1978. Perkinsus gen. n. and other new taxa in the protozoan phylum Apicomplexa. Journal of Parasitology 64: 549.Google Scholar
  52. Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, B. Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. Gerber, A. W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode & K. H. Schleifer, 2004. ARB: a software environment for sequence data. Nucleic Acids Research 32: 1363–1371.CrossRefPubMedGoogle Scholar
  53. Mackin, J. G., 1951. Histopathology of infection of Crassostrea virginica Gmelin by Dermocystidium marinum Mackin, Owen and Collier. Bulletin of Marine Science of the Gulf and Caribbean 1: 72–87.Google Scholar
  54. Mackin, J. G. & S. M. Ray, 1966. The taxonomic relationships of Dermocystidium marinum Mackin. Owen and Collier. Journal of Invertebrate Pathology 8: 544–545.CrossRefGoogle Scholar
  55. Mackin, J. G., H. M. Owen & A. Collier, 1950. Preliminary note on the occurrence of a new protistan parasite, Dermocystidium marinum n. sp. in Crassostrea virginica (Gmelin). Science 111: 328–329.CrossRefPubMedGoogle Scholar
  56. Mangot, J. F., C. Lepère, C. Bouvier, D. Debroas & I. Domaizon, 2009. Community structure and dynamics of small eukaryotes (<5 μm) targeted by new oligonucleotide probes: a new insight into the lacustrine microbial food web. Applied in Environmental Microbiology 75: 6373–6381.CrossRefGoogle Scholar
  57. Moore, R. B., M. Obornik, J. Janouskovec, T. Chrudimsky, M. Vancova, D. H. Green, S. W. Wright, N. W. Davies, C. J. Bolch, K. Heimann, J. Slapeta, O. Hoegh-Guldberg, J. M. Logsdon & D. A. Carter, 2008. A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451: 959–963.CrossRefPubMedGoogle Scholar
  58. Moreira, D. & P. Lόpez-García, 2002. The molecular ecology of microbial eukaryotes unveils a hidden world. Trends in Microbiology 10: 31–38.CrossRefPubMedGoogle Scholar
  59. Ngo, T. T. T. & K. S. Choi, 2004. Seasonal changes of Perkinsus and Cercaria infections in the Manila clam Ruditapes philippinarum from Jeju, Korea. Aquaculture 239: 57–68.CrossRefGoogle Scholar
  60. Norén, F., O. Moestrup & A. S. Rehnstam-Holm, 1999. Parvilucifera infectans Norén et Moestrup gen. et sp. nov. (Perkinsozoa phylum nov.): a parasitic flagellate capable of killing toxic microalgae. European Journal of Protistology 35: 233–254.Google Scholar
  61. Oborník, M., J. Janouskovec, T. Chrudimsky & J. Lukes, 2009. Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again. International Journal for Parasitology 39: 1–12.CrossRefPubMedGoogle Scholar
  62. Ordas, M. C. & A. Figueras, 1998. In vitro culture of Perkinsus atlanticus, a parasite of the carpet shell clam Ruditapes decussatus. Diseases of Aquatic Organisms 33: 129–136.CrossRefGoogle Scholar
  63. Park, M. G., S. K. Cooney, W. Yih & D. W. Coats, 2002. Effects of two strains of the parasitic dinoflagellate Amoebophrya on growth, photosynthesis, light absorption, and quantum yield of bloom-forming dinoflagellates. Marine Ecology Progress Series 227: 281–292.CrossRefGoogle Scholar
  64. Park, M. G., W. Yih & D. W. Coats, 2004. Parasites and phytoplankton, with special emphasis on dinoflagellate infections. The Journal of Eukaryotic Microbiology 51: 144–155.CrossRefGoogle Scholar
  65. Park, K. I., T. T. T. Ngo, S. D. Choi, M. Cho & K. S. Choi, 2006. Occurrence of Perkinsus olseni in the Venus clam Protothaca jedoensis in Korean waters. Journal of Invertebrate Pathology 93: 81–87.CrossRefPubMedGoogle Scholar
  66. Reece, K. S., M. E. Siddall, E. M. Burreson & J. E. Graves, 1997. Phylogenetic analysis of Perkinsus based on actin gene sequences. Journal of Parasitology 83: 417–423.CrossRefPubMedGoogle Scholar
  67. Richards, T. A., A. A. Vepritskiy, D. E. Gouliamova & S. A. Nierzwicki-Bauer, 2005. The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages. Environmental Microbiology 7: 1413–1425.CrossRefPubMedGoogle Scholar
  68. Sanders, R. W., K. G. Porter, S. J. Bennet & A. E. DeBiase, 1989. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans. Limnology and Oceanography 34: 673–687.CrossRefGoogle Scholar
  69. Siddall, M. E., K. S. Reece, J. E. Graves & E. M. Burreson, 1997. “Total evidence” refutes the inclusion of Perkinsus species in the phylum Apicomplexa. Parasitology 115: 165–167.CrossRefPubMedGoogle Scholar
  70. Soniat, T. M., 1996. Epizootiology of Perkinsus marinus disease of eastern oysters in the Gulf of México. The Journal of Shellfish Research 15: 35–43.Google Scholar
  71. Soudant, P., F. L. E. Chu & E. D. Lund, 2005. Assessment of the cell viability of cultured Perkinsus marinus (Perkinsea), a parasitic protozoan of the Eastern Oyster, Crassostrea virginica, using SYBRgreen–propidium iodide double staining and flow cytometry. The Journal of Eukaryotic Microbiology 52: 492–499.CrossRefPubMedGoogle Scholar
  72. Teles-Grilo, M. L., J. Tato-Costa, S. M. Duarte, A. Maia, G. Casal & C. Azevedo, 2007. Is there a plastid in Perkinsus atlanticus (Phylum Perkinsozoa)? European Journal of Protistology 43: 163–167.CrossRefPubMedGoogle Scholar
  73. Weinbauer, M. G., 2004. Ecology of prokaryotic viruses. FEMS Microbiology Reviews 28: 127–181.CrossRefPubMedGoogle Scholar
  74. Wommack, K. E. & R. R. Colwell, 2000. Virioplankton: viruses in aquatic ecosystems. Microbiology and Molecular Biology Reviews 64: 69–114.CrossRefPubMedGoogle Scholar
  75. Zingone, A. & H. O. Enevoldsen, 2000. The diversity of harmful algal blooms: a challenge for science and management. Ocean & Coastal Management 43: 725–748.CrossRefGoogle Scholar
  76. Zwart, G., B. C. Crump, M. P. Kamst-van Agterveld, F. Hagen & S. K. Han, 2002. Typical freshwater bacteria: an analysis of available 16S rNRA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology 28: 141–155.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jean-François Mangot
    • 1
    • 2
  • Didier Debroas
    • 2
  • Isabelle Domaizon
    • 1
  1. 1.INRA – UMR 42 CARRTEL, Centre Alpin de Recherche sur les Réseaux Trophiques des Ecosystèmes LimniquesThonon-les-bains CedexFrance
  2. 2.LMGE, Laboratoire “Microorganismes: Génome & Environnement”UMR CNRS 6023Aubière CedexFrance

Personalised recommendations