Skip to main content

Advertisement

Log in

Chemical and biological response of two small lakes in the Khumbu Valley, Himalayas (Nepal) to short-term variability and climatic change as detected by long-term monitoring and paleolimnological methods

  • MOUNTAIN LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The most remote regions of the globe are home of the least disturbed ecosystems, yet they are threatened by air pollution and by climatic change. The Himalayas are one of the most isolated and least explored wilderness areas in the world outside the Polar Regions and it is for this reason that the Tibetan Plateau is often referred to as the ‘Third Pole’. Since 1990, an annual limnological survey (including chemistry and biology) has been carried out at two lakes located in the Kumbhu Valley, Nepal, at 5200 and 5400 m a.s.l., respectively. Lake water chemistry surveys reveal a persistent increase in the ionic content of the lake water, a trend which appears to be closely linked to increasing temperature. In this study, we also analysed lake sediment cores for historical changes in algal abundance and community composition to evaluate how long-term variations in primary producer communities corresponded to known regional variations in climate systems during the past 3500 years. Paleolimnological results support the evidence that the strong variability observed in the chemical data drives the variability in lake production and in the composition of algal assemblages. These variabilities can be related to known features of local climate and the values recorded in the recent years compare well with those recorded during warm periods, such as around 2000 BP, and thus support the idea that this area of the Himalayan Range, influenced by the South Asia monsoon, is closely linked to Northern Hemisphere climate dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ageta, Y., 1976. Characteristics of precipitation during monsoon season in Khumbu Himal. Seppyo 38: 84–88.

    Google Scholar 

  • Agrawala, S., V. Raksakulthai, M. van Aalst, P. Larsen, J. Smith & J. Reynolds, 2003. Development and Climate Change in Nepal. Focus on Water Resources and Hydropower. OECD, Paris, France: 64 pp.

    Google Scholar 

  • Aizaki, M., A. Terashima, H. Nakahara, T. Nishio & Y. Ishida, 1987. Trophic status of Tilitso, a high altitude Himalayan lake. Hydrobiologia 153: 217–224.

    CAS  Google Scholar 

  • Anthwal, A., V. Joshi, A. Sharma & S. Anthwal, 2006. Retreat of Himalayan glaciers – indicator of climate change. Nature and Science 4: 53–59.

    Google Scholar 

  • Battarbee, R. W., N. J. Anderson, E. Jeppesen & P. R. Leavitt, 2005. Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshwater Biology 50: 1772–1780.

    Article  CAS  Google Scholar 

  • Baudo, R., G. Tartari & M. Munawar, 1998. Top of the World Environmental Research: Mount Everest-Himalayan Ecosystem. Backhuys Publishers, Leiden: 290 pp.

    Google Scholar 

  • Baudo, R., J. F. Shroder, G. Tartari & E. Vuillermoz, 2007. Mountain Witnesses of Global Changes. Elsevier, Amsterdam, The Netherlands: 342 pp.

    Google Scholar 

  • Beine, H. J., M. Engardt, D. A. Jaffe, Ø. Hov, K. Holmen & F. Stordal, 1996. Measurements of NOx and aerosol particles at the Ny-Ålesund Zeppelin mountain station on Svalbard; influence of regional and local pollution sources. Atmospheric Environment 30: 1067–1079.

    Article  CAS  Google Scholar 

  • Bennet, K. D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132: 155–170.

    Article  Google Scholar 

  • Bertoni, R., C. Callieri & M. Contesini, 1998. Organic carbon and microorganisms in two Nepalese lakes. Memorie dell’Istituto Italiano di Idrobiologia 57: 99–106.

    Google Scholar 

  • Bhandari, B., 1993. The current status of wetland in Nepal. In Foundation, I. (ed.), Towards Wise Use of Asian Wetlands. Asian Wetland Symposium, Kyoto, Japan: 103–111.

  • Bolch, T., M. Buchroithner, T. Pieczonka & A. Kunert, 2008. Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. Journal of Glaciology 54: 592–600.

    Article  Google Scholar 

  • Bonasoni, P., P. Laj, F. Angelini, J. Arduini, U. Bonafè, F. Calzolari, P. Cristofanelli, S. Decesari, M. C. Facchini, S. Fuzzi, G. P. Gobbi, M. Maione, A. Marinoni, A. Petzold, F. Roccato, J. C. Roger, K. Sellegri, M. Sprenger, H. Venzac, G. P. Verza, P. Villani & E. Vuillermoz, 2008. The ABC-Pyramid atmospheric research observatory in Himalaya for aerosol, ozone and halocarbon measurements. Science of the Total Environment 391: 252–261.

    Article  CAS  PubMed  Google Scholar 

  • Bortolami, G., 1998. Geology of the Khumbu Region, Mt Everest, Nepal. In Lami, A. & G. Giussani (eds), Limnology of High Altitude Lakes in the Mt Everest Region (Nepal). Memorie dell’Istituto italiano di Idrobiologia: 41–49.

  • Brown, L. E., D. M. Hannah & A. M. Milner, 2007. Vulnerability of alpine stream biodiversity to shrinking glaciers and snowpacks. Global Change Biology 13: 958–966.

    Article  Google Scholar 

  • Buffa, G., C. Ferrari & S. Lovari, 1998. The upper subalpine vegetation of Sagarmatha National Park (Khumbu Himal area, Nepal) and its relationship with Himalayan tahr, musk deeer and domestic yak. An outline. In Baudo, R., G. Tartari & M. Munawar (eds), Top of the World Environmental Research: Mount Everest Himalayas. Backhuys, Leiden, The Netherlands: 167–175.

    Google Scholar 

  • Camarero, L., M. Rogora, R. Mosello, N. J. Anderson, A. Barbieri, I. Botev, M. Kernan, J. Kopacek, A. Korhola, A. F. Lotter, G. Muri, C. Postolache, E. StuchlÍK, H. Thies & S. W. Wright, 2009. Regionalisation of chemical variability in European mountain lakes. Freshwater Biology 54: 2452–2469.

    Article  CAS  Google Scholar 

  • Chen, F., J. Holmes, B. Wünnemann & Z. Yu, 2009. Holocene climate variability in arid Asia: nature and mechanisms. Quaternary International 194: 1–5.

    Article  Google Scholar 

  • Cui, X. & H. F. Graf, 2009. Recent land cover changes on the Tibetan Plateau: a review. Climatic Change 94: 47–61.

    Article  Google Scholar 

  • DHM, 1998. Climatological Records of Nepal 1991–1994. Department of Hydrology and Meteorology, HMG-Nepal, Kathmandu: 232 pp.

  • DHM, 2007. Climatological Records of Nepal 1999–2004. Department of Hydrology and Meteorology, HMG-Nepal, Kathmandu: 128 pp.

  • Drever, J. I. & J. Zobrist, 1992. Chemical weathering of silicate rocks as a function of elevation in the southern Swiss Alps. Geochimica et Cosmochimica Acta 56: 3209–3216.

    Article  CAS  Google Scholar 

  • Grimm, E. C., 1987. CONISS: a fortran 77 program for stratigraphically constrained 460 cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13: 3–35.

    Article  CAS  Google Scholar 

  • Grimm, E. C., L. J. J. Maher & D. M. Nelson, 2009. The magnitude of error in conventional bulk-sediment radiocarbon dates from central North America. Quaternary Research 72: 301–308.

    Article  CAS  Google Scholar 

  • Guilizzoni, P. & A. Lami, 2001. Paleolimnology: use of algal pigments as indicators. In Bitton, G. (ed.), Encyclopaedia of Environmental Microbiology. Wiley J. and Sons, Chichester, UK: 2306–2317.

    Google Scholar 

  • Guilizzoni, P., G. Bonomi, G. Galanti & D. Ruggiu, 1983. Relationship between sedimentary pigments and primary production: evidence from core analyses of twelve Italian lakes. Hydrobiologia 103: 103–106.

    Article  CAS  Google Scholar 

  • Guilizzoni, P., A. Lami, J. D. Smith, C. A. Belis, M. Bianchi, R. Bettinetti, A. Marchetto & H. Muntau, 1998. Palaeolimnological analysis of four Himalayan lakes (Khumbu Valley, Nepal). In: Tartari, G., R. Baudo & M. Munawar (eds), Top of the Word, Mount Everest-Himalaya Ecosystem. Backhuys Publishers, Leiden, The Netherlands: 189–217.

  • Guilizzoni, P., A. Marchetto, A. Lami, A. Brauer, L. Vigliotti, S. Musazzi, L. Langone, M. Manca, F. Lucchini, N. Calanchi, E. Dinelli & A. Mordenti, 2006. Records of environmental and climatic changes during the late Holocene from Svalbard: palaeolimnology of Kongressvatnet. Journal of Paleolimnology 36: 325–351.

    Article  Google Scholar 

  • Heiri, O., A. F. Lotter & G. Lemcke, 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.

    Article  Google Scholar 

  • Henderson, A. C. G. & J. A. Holmes, 2009. Palaeolimnological evidence for environmental change over the past millennium from Lake Qinghai sediments: a review and future research prospective. Quaternary International 194: 134–147.

    Article  Google Scholar 

  • Hirano, M., 1963. Freshwater algae from the Nepal Himalaya, collected by a member of the Japanese climbing expedition. Contributions from the biological laboratory Kyoto University: 16 pp.

  • Hirsch, R. M., J. R. Slack & R. A. Smith, 1982. Techniques of trend analysis for monthly water quality data. Water Resources Research 18: 107–121.

    Article  Google Scholar 

  • Hirsch, R. M., R. B. Alexander & R. A. Smith, 1991. Selection of methods for the detection and estimation of trends in water quality. Water Resources Research 29: 803–813.

    Article  Google Scholar 

  • Holmes, J. A., E. R. Cook & B. Yang, 2009. Climate change over the past 2000 years in Western China. Quaternary International 194: 91–107.

    Article  Google Scholar 

  • Hutchinson, G. E., 1937. Limnological studies in Indian Tibet. Internationale Revue der gesamten Hydrobiologie und Hydrographie 35: 134–177.

    Article  Google Scholar 

  • IPCC, 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. WG2-Ecosystems Their Properties, Goods and Services. Cambridge University Press, Cambridge: 212–272.

    Google Scholar 

  • Jones, J. R., M. F. Knowlton & D. B. Swar, 1989. Limnological reconnaissance of waterbodies in central and southern Nepal. Hydrobiologia 184: 171–189.

    CAS  Google Scholar 

  • Juggins, S., 2009. Rioja. an R package for the analysis of quaternary science data, New Castle, UK.

  • Kamenik, C., K. A. Konig, R. Schmidt, P. G. Appleby, J. A. Dearing, A. Lami, R. Thompson & R. Psenner, 2000. Eight hundred years of environmental changes in a high Alpine lake (Gossenköllesee, Tyrol) inferred from sediment record. Journal of Limnology 59 Suppl.: 43–52.

  • Karlsson, J., A. Jonsson & M. Jansson, 2005. Productivity of high-latitude lakes: climate effect inferred from altitude gradient. Global Change Biology 11: 710–715.

    Article  Google Scholar 

  • Kehrwald, N. M., L. G. Thompson, T. Yao, E. Mosley-Thompson, U. Schotterer, V. Alfimov, J. Beer, J. Eikenberg & M. E. Davis, 2008. Mass loss on Himalayan glacier endangers water resources. Geophysical Research Letters 35: L22503.

    Article  Google Scholar 

  • Kendall, M. G., 1975. Rank Correlation Measures. Charles Griffin, London: 202 pp.

    Google Scholar 

  • Khan, M. A. & D. P. Zutshi, 1980. Contribution to high altitude limnology of the himalayan system. I. Limnology and primary productivity of the plankton community of Nilang Lake, Kashmir. Hydrobiologia 75: 102–112.

    Article  Google Scholar 

  • Koinig, K. A., R. Psenner & R. Schmidt, 1999. Effects of air temperature changes and acid deposition on the pH history of three high alpine lakes. Proceedings of the 14th International Diatom Symposium. September 2–8,1996, Tokyo, Japan: 467–478.

  • Kraus, H., 1966. Das klima von Nepal Khumbu Himal, Munchen: 301–321.

  • Krishna, A. P., 2005. Snow and glacier cover assessment in the high mountains of Sikkim Himalaya. Hydrological Process 19: 2375–2383.

    Article  Google Scholar 

  • Lami, A. & G. Giussani, 1998. Limnology of high altitude lakes in the Mt Everest Region (Himalayas, Nepal): 244 pp.

  • Lami, A., F. Niessen, P. Guilizzoni, J. Masaferro & C. A. Belis, 1994. Palaeolimnological studies of the eutrophication of volcanic Lake Albano (central Italy). Journal of Paleolimnology 10: 181–197.

    Article  Google Scholar 

  • Lami, A., P. Guilizzoni, A. Marchetto, R. Bettinetti & D. J. Smith, 1998. Palaeolimnological evidence of environmental changes in some high altitude Himalayan lakes (Nepal). Memorie dell’Istituto Italiano di Idrobiolgia 57: 107–130.

    Google Scholar 

  • Laurion, I., A. Lami & R. Sommaruga, 2002. Distribution of mycosporine-like amino acids and photoprotective carotenoids among freshwater phytoplankton assemblages. Aquatic Microbial Ecology 26: 283–294.

    Article  Google Scholar 

  • Leavitt, P. R. & D. A. Hodgson, 2001. Sedimentary pigments. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments. Vol. 3. Terrestrial, Algal and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht, The Netherlands: 295–325.

    Google Scholar 

  • Leavitt, P. R., P. R. Sanford, S. R. Carpenter & J. F. Kitchell, 1994. An annual fossil record of production, planktivory and piscivory during whole-lake manipulations. Journal of Paleolimnology 11: 133–149.

    Article  Google Scholar 

  • Leavitt, P. R., D. L. Findlay, R. I. Hall & J. P. Smol, 1999. Algal responses to dissolved organic carbon loss and pH decline during whole-lake acidification: evidence from paleolimnology. Limnology and Oceanography 44: 757–773.

    Article  CAS  Google Scholar 

  • Livingstone, D. M., 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Climatic Change 57: 205–225.

    Article  Google Scholar 

  • Löffler, H., 1969. High altitude lakes in Mt Everest region. Verhandlungen des Internationalen Verein Limnologie 17: 373–385.

    Google Scholar 

  • Manca, M., D. Ruggiu, P. Panzani, A. Asioli, G. Mura & A. M. Nocentini, 1998. Report on a collection of aquatic organisms from high mountain lakes in the Khumbu Valley (Nepalese Himalayas). In Lami, A. & G. Giussani (eds), Limnology of High Altitude Lakes in the Mt Everest Region (Nepal). Memorie dell’Istituto Italiano di Idrobiologia 57: 77–98.

  • Mani, A., 1981. The climate of the Himalaya. In Lall, J. S. & A. D. Moddie (eds), The Himalaya: Aspects of Change. Oxford University Press, Delhi: 1–15.

    Google Scholar 

  • Messerli, B., 1997. The global mountain problematique (Abstracts). European Conference on Environmental and Societal Change: 2–3.

  • Mosello, R., G. A. Tartari, A. Marchetto, S. Polesello, M. Bianchi & H. Muntau, 2004. Ion chromatography performances evaluated from the third AQUACON freshwater analysis interlaboratory exercise. Accreditation and Quality Assurance: Journal for Quality, Comparability and Reliability in Chemical Measurement 9: 242–246.

    Google Scholar 

  • Müller, F., 1980. Present and late pleistocene equilibrium line altitudes in the Mt Everest region – an application of the glacier inventory. IAHS-AISH Publication No. 126: 75–94.

  • Oldfield, F., 1983. The role of magnetic studies in palaeohydrology. In Gregory, K. J. (ed.), Background to Palaeohydrology. A Perspective. Backhuys Publishers, Leiden, The Netherlands: 141–166.

  • Oldfield, F., C. Barnosky, E. B. Leopold & J. P. Smith, 1983. Mineral magnetic studies of lake sediments. Hydrobiologia 103: 37–44.

    Article  CAS  Google Scholar 

  • Owen, L. A., M. W. Caffee, R. C. Finkel & Y. B. Seong, 2008. Quaternary glaciation of the Himalayan–Tibetan orogen. Journal of Quaternary Science 23: 513–531.

    Article  Google Scholar 

  • Pedrozo, F., S. Chillrud, P. Temporetti & M. Diaz, 1993. Chemical composition and nutrient limitation in rivers and lakes of Northern Patagonian Andes (39.5°–42°S; 71°W) (Rep. Argentina). Verhandlungen des Internationalen Verein Limnologie 25: 207–214.

    CAS  Google Scholar 

  • Phadtare, N. R., 2000. Sharp decrease in summer monsoon strength 4000–3500 cal yr B.P. in the Central Higher Himalaya of India based on pollen evidence from Alpine Peat. Quaternary Science Reviews 53: 122–129.

    Google Scholar 

  • Psenner, R., 1999. Living in a dusty world: airborne dust as a key factor for alpine lakes. Water Air Soil Pollution 112: 217–227.

    Article  CAS  Google Scholar 

  • Psenner, R. & R. Schmidt, 1992. Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature 356: 781–783.

    Article  CAS  Google Scholar 

  • Renberg, I., Y. W. Brodin, G. Cronberg, F. El Daoushy, F. Oldfield, B. Rippey, S. Sandoey, J. E. Wallin & M. Wik, 1990. Recent acidification and biological changes in Lilla Oeresjoen, southwest Sweden, and the relation to atmospheric pollution and land-use history. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 327: 391–396.

    Article  Google Scholar 

  • Rogora, M., R. Mosello & S. Arisci, 2003. The effect of climate warming on the hydrochemistry of alpine lakes. Water Air Soil Pollution 148: 347–361.

    Article  CAS  Google Scholar 

  • Rogora, M., J. Massaferro, A. Marchetto, G. Tartari & R. Mosello, 2008. The water chemistry of some shallow lakes in Northern Patagonia and their nitrogen status in comparison with remote lakes in different regions of the globe. Journal of Limnology 67: 75–76.

    Google Scholar 

  • Röthlisberger, R. & M. A. Geyh, 1985. Glacier variations in Himalayas and Karakorum. Z. Gletscherkunde Glazialgeol 21: 237–249.

    Google Scholar 

  • Rühland, K., A. Pienitz & J. P. Smol, 2003. Paleolimnological evidence from diatoms for recent environmental changes in 50 lakes across Canadian Arctic Treeline. Arctic, Antarctic, and Alpine Research 35: 110–123.

    Article  Google Scholar 

  • Salerno, F., E. Buraschi, G. Bruccoleri, G. Tartari & C. Smiraglia, 2008. Glacier surface-area changes in Sagarmatha national park, Nepal, in the second half of the 20th century, by comparison of historical maps. Journal of Glaciology 54: 738–752.

    Article  Google Scholar 

  • Sars, G., 1903. On the crustacean fauna of central Asia. Pt. II Cladocera. Annuaire du Musee Zoologique de l’Academie d. Sciences de St. Petersbourg 8: 157–194.

    Google Scholar 

  • Schindler, D. W., 2009. Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnology and Oceanography 54: 2349–2358.

    CAS  Google Scholar 

  • Sharma, S., 2001. The ganges crisis – government lacks strategic plan. Proceedings of the International Conference on Freshwater, Bonn, Germany, 3–7.

  • Sharma, P. C. & M. C. Pant, 1985. Species composition of zooplankton in two Kaumann Himalayan lakes (U.P. India). Archiv für Hydrobiologie 102: 387–403.

    Google Scholar 

  • Shresta, A. B., C. P. Wake, P. A. Mayewski & J. E. Dibb, 1999. Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal in the period 1971–94. Journal of Climate 12: 2775–2787.

    Article  Google Scholar 

  • Smiraglia, C., C. Mayer, C. Mihalcea, G. Diolaiuti, M. Belò & G. Vassena, 2007. Ongoing variations of Himalayan and Karakoram glaciers as witnesses of global changes: recent studies of selected glaciers. In Baudo, R., G. Tartari & E. Vuillermoz (eds), Mountain Witnesses of Global Changes. Research in the Himalaya and Karakoram: SHARE-ASIA Project. Developments in Earth Surface Processes, No. 10: 235–248.

  • Smol, J. P., I. R. Walker & P. R. Leavitt, 1991. Paleolimnology and hindcasting climatic trends. Internationale Vereinigung für Theoretische und Angewandte Limnologie 24: 1240–1246.

    Google Scholar 

  • Solomina, O., W. Haeberli, C. Kull & G. Wiles, 2008. Historical and Holocene glacier-climate variations: general concepts and overview. Global and Planetary Change 60: 1–9.

    Article  Google Scholar 

  • Sommaruga, R. & R. Psenner, 2001. High-Mountain lakes and streams: indicators of a changing world. Arctic, Antarctic, and Alpine Research 33: 383–384.

    Google Scholar 

  • Sommaruga, R., S. Woegrath, K. A. Koinig, R. Schmidt, R. Sommaruga, R. Tessadri & R. Psenner, 1997. Temperature effects on the acidity of remote alpine lakes. Nature 387: 64–67.

    Article  Google Scholar 

  • Stenseth, N. C., A. Mysterud, G. Ottersen, J. W. Hurrell, K. S. Chan & M. Lima, 2002. Ecological effects of climate fluctuations. Science 297: 1292–1296.

    Article  CAS  PubMed  Google Scholar 

  • Stuiver, M., P. J. Reimer & R. W. Reimer, 2000. CALIB 4.4. www.calib.org. Quaternary Research Center, University of Washington, Seattle.

  • Swar, D. B., 1980. Present status of limnological studies and research in Nepal. In Mori, S. & I. Ikusima (eds), Proceedings of First Workshop on “Promotion of Limnology in Developing Countries”. XXI SIL Congress, Kyoto, Japan: 43–47.

  • Tartari, G., G. P. Verza & L. Bertolani, 1998a. Meteorological data at the Pyramid Observatory Laboratory (Khumbu Valley, Sagarmatha National Park, Nepal). In Lami, A. & G. Giussani (eds). Limnology of High Altitude Lakes in the Mt Everest Regions (Himalaya, Nepal). Memorie dell’Istituto Italiano di Idrobiologia 57: 23–40.

  • Tartari, G. A., G. Tartari & R. Mosello, 1998b. Water chemistry of high altitude lakes in the Khumbu and Imja Kola valleys (Nepalese Himalayas). Memorie dell’Istituto Italiano di Idrobiologia 57: 51–76.

    Google Scholar 

  • Tartari, G., F. Salerno, E. Buraschi, G. Bruccoleri & C. Smiraglia, 2008. Lake surface area variations in the North-Eastern sector of Sagarmatha National Park (Nepal) at the end of the 20th Century by comparison of historical maps. Journal of Limnolology 67: 139–154.

    Google Scholar 

  • Troll, C., 1959. Die tropischen Gebie. Bonner geogr. Abh. 25: 93 pp.

  • Ueno, M., 1966. Cladocera and copepoda from Nepal. Japanese Journal of Zoology 15: 95–100.

    Google Scholar 

  • Vass, K. K., A. Wanganeo, H. S. Raina, D. P. Zutshi & R. Wanganeo, 1989. Summer limnology and fisheries of high mountain lakes of Kashmir Himalayas. Archiv für Hydrobiologie 114: 603–620.

    Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, 4th ed. Springer, New York: 495 pp.

    Google Scholar 

  • Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger & D. G. Tilman, 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7: 737–750.

    Google Scholar 

  • Vuillermoz, E., E. Cabini, G. P. Verza & G. Tartari, 2008. Pyramid Meteorological Network (PMN). Khumbu Valley, Nepal. Summary Report 1994–2006. SHARE Project. Ev-K2-CNR, Bergamo, Italia: p. 287.

  • Wögrath, S. & R. Psenner, 1995. Seasonal, annual and longterm variability in the water chemistry of a remote high mountain lake: acid rain versus natural changes. Water, Air, and Soil pollution 85: 359–364.

    Article  Google Scholar 

  • Wrona, F. J., T. D. Prowse, J. D. Reist, J. E. Hobbie, L. M. J. Levesque & W. F. Vincent, 2006. Climate change effects on aquatic biota, ecosystem structure and function. Ambio 35: 359–369.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, R. R. & J. Singh, 2002. Tree-ring-based spring temperature patterns over the past four centuries in Western Himalaya. Quaternary Research 57: 299–305.

    Article  Google Scholar 

  • Yang, B., A. Bräuning, J. Liu, M. E. Davis & S. Yajun, 2009. Temperature changes on the Tibetan Plateau during the past 600 years inferred from ice cores and tree rings. Global and Planetary Change 69: 71–78.

    Article  Google Scholar 

  • Zimmermann, M., M. Bichsel & H. Kienholz, 1986. Mountain hazards mapping in the Khumbu Himal, Nepal. Mountain Research and Development 6: 29–40.

    Article  Google Scholar 

  • Züllig, H., 1982. Untersuchungen über die Stratigraphie von Carotinoiden im geschichteten Sediment von 10 Schweizer Seen zur Erkundung früherer Phytoplankton-Entfaltungen. Schweizerische Zeitschrift für Hydrologie 44: 1–98.

    Article  Google Scholar 

  • Zutshi, D. P., 1991. Limnology of high altitude lakes of Himalayan region. Verhandlungen des Internationalen Verein Limnologie 24: 1077–1080.

    CAS  Google Scholar 

  • Zutshi, D. P. & K. K. Vass, 1970. High altitude lakes of Kashmir. Ichthiologica 10: 12–15.

    Google Scholar 

Download references

Acknowledgements

This study was carried out within the framework of the Ev-K²-CNR ‘Scientific and Technological Research in Himalayas and Karakorum’ Project with support from the Ev-K²-CNR Committee and in collaboration with the Royal Nepal Academy of Science and Technology (RONAST). The research was also made possible thanks to contributions from the Italian National Research Council (CNR) and the Italian Ministry of Foreign Affairs. Finally, we want to thank the two referees (Dr. L. Camarero and one anonymous) and Dr. F. Oldfield for their valuable comments to the text and for the revision of the English style.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Lami.

Additional information

Guest editors: Hilde Eggermont, Martin Kernan & Koen Martens / Global change impacts on mountain lakes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lami, A., Marchetto, A., Musazzi, S. et al. Chemical and biological response of two small lakes in the Khumbu Valley, Himalayas (Nepal) to short-term variability and climatic change as detected by long-term monitoring and paleolimnological methods. Hydrobiologia 648, 189–205 (2010). https://doi.org/10.1007/s10750-010-0262-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0262-3

Keywords

Navigation