, Volume 645, Issue 1, pp 203–212 | Cite as

Separation and analysis of different types of nematocysts from Cyanea capillata (L.) medusae

  • Annika Wiebring
  • Heike Helmholz
  • Stephan Lassen
  • Andreas Prange
  • Gerhard Jarms


Medusae play an important role in marine ecosystems, as competitors of many invertebrate and fish species. Additionally, jellyfish stings can cause severe pain, inflammation of the affected skin, and allergic reactions in human. Climate and environmental changes are likely to affect the medusae, but it is not yet clear whether these will affect their distribution, physiology, and their toxicity. Very little is known about the effect of biotic and abiotic factors on the proliferation and the distribution of medusan nematocysts. In this study, we compared three types of nematocysts (euryteles and A- and O-isorhizas) and venoms of Cyanea capillata medusae (Scyphozoa) obtained from the North Sea and the Baltic Sea, which have different salinity and temperature ranges. Different types of nematocysts were separated by laser microdissection and pressure catapulting (LMPC), and the proteinaceous contents of the nematocysts were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Medusae from the brackish Baltic Sea possessed more euryteles than those from the North Sea. The O-isorhizas and A-isorhizas were smaller in the Baltic Sea sample compared to the North Sea samples and the length-to-width ratios were larger in the Baltic Sea sample. Moreover, the pattern of proteins (potential toxins) obtained from the separated nematocysts showed differences among samples and nematocyst types, but no clear pattern was observable. This study displays the novel LMPC/MALDI-TOF MS approach as a useful tool to investigate the function and venom of cnidarian nematocysts types.


Jellyfish Sting Protein pattern LMPC Mass spectrometry Cnidom Venom 



We are grateful to Dr. Jürgen Gandraß (GKSS Research Centre Geesthacht, Institute for Costal Research, Department for Marine Bioanalytical Chemistry) for critically reading the manuscript.


  1. Brodeur, R. D., H. Sugisaki & G. L. Hunt, 2002. Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Marine Ecology Progress Series 233: 89–103.CrossRefGoogle Scholar
  2. Bruker Daltonik GmbH, 2004. AnchorChipTM technology, revision 2.3. Preparation for ultra-sensitive automated MALDI-TOF MS. Bruker Daltonik, Bremen: 17.Google Scholar
  3. Burnett, J. W., G. J. Calton & J. B. Larsen, 1988. Significant envenomation by Aurelia aurita, the moon jellyfish. Toxicon 26: 215–217.CrossRefPubMedGoogle Scholar
  4. Calder, D. R., 1974. Nematocysts of the coronate scyphomedusa, Linuche unguiculata, with a brief re-examination of scyphozoan nematocyst classification. Chesapeake Science 15: 170–173.CrossRefGoogle Scholar
  5. Carrette, T., P. Alderslade & J. Seymour, 2002. Nematocyst ratio and prey in two Australian cubomedusans, Chironex fleckeri and Chiropsalmus sp. Toxicon 40: 1547–1551.CrossRefPubMedGoogle Scholar
  6. Colin, S. P. & J. H. Costello, 2007. Functional characteristics of nematocysts found on the scyphomedusa Cyanea capillata. Journal of Experimental Marine Biology and Ecology 351: 114–120.CrossRefGoogle Scholar
  7. Doyle, T. K., H. de Hass, D. Cotton, B. Dorshel, V. Cummins, J. D. R. Houghton, J. Davenport & G. C. Hays, 2008. Widespread occurrence of the jellyfish Pelagia noctiluca in Irish coastal and shelf waters. Journal of Plankton Research 30: 963–968.CrossRefGoogle Scholar
  8. Fenner, P. J., 1998. Dangers in the ocean: The traveler and the marine envenomation. I. Jellyfish. Journal of Travel Medicine 5: 135–141.CrossRefPubMedGoogle Scholar
  9. Hay, S., 2006. Marine ecology: gelatinous bells may ring change in marine ecosystems. Current Biology 16: R679–R682.CrossRefPubMedGoogle Scholar
  10. Heeger, T. & H. Möller, 1987. Ultrastructural observations on prey capture and digestion in the scyphomedusa Aurelia aurita. Marine Biology 96: 391–400.CrossRefGoogle Scholar
  11. Helmholz, H., C. Ruhnau, C. Schütt & A. Prange, 2007. Comparative study on the cell toxicity and enzymatic activity of two northern species Cyanea capillata (L.) and Cyanea lamarckii (Péron & Léslieur). Toxicon 50: 53–64.CrossRefPubMedGoogle Scholar
  12. Helmholz, H., B. D. Johnston, C. Ruhnau & A. Prange, 2010. Gill cell toxicity of northern boreal scyphomedusae Cyanea capillata and Aurelia aurita measured by an in vitro cell assay. Hydrobiologia. doi:10.1007/s10750-010-0216-9.
  13. Hessinger, D. A., 1988. Nematocyst venoms and toxins. In Hessinger, D. A. & H. N. Lenhoff (eds), The Biology of Nematocysts. Academic Press, San Diego: 333–367.Google Scholar
  14. Jarms, G., H. Tiemann & A. Båmstedt, 2002. Development and biology of Periphylla periphylla (Scyphozoa: Coronatae) in a Norwegian fjord. Marine Biology 141: 647–657.CrossRefGoogle Scholar
  15. Kintner, A. H., J. E. Seymour & S. L. Edwards, 2005. Variation in lethality and effects of two Australian chirodropid jellyfish venoms in fish. Toxicon 46: 699–708.CrossRefPubMedGoogle Scholar
  16. Lassen, S., H. Helmholz, C. Ruhnau & A. Prange, 2010. Characterisation of neurotoxic polypeptides from Cyanea capillata medusae (Scyphozoa). Hydrobiologia. doi:10.1007/s10750-010-0215-x.
  17. Lynam, C., S. Hay & A. Brierley, 2004. Interannual variability in abundance of North Sea jellyfish and links to the North Atlantic Oscillation. Limnology and Oceanography 49: 637–643.CrossRefGoogle Scholar
  18. Lynam, C. P., M. R. Heath, S. J. Hay & A. S. Brierley, 2005. Evidence for impacts by jellyfish on North Sea herring recruitment. Marine Ecology Progress Series 298: 157–167.CrossRefGoogle Scholar
  19. Mariscal, R. N., 1974. Nematocysts. In Muscatine, L. & H. M. Lenhoff (eds), Coelenterate Biology. Academic Press, New York: 129–178.Google Scholar
  20. Östman, C. & J. Hydman, 1997. Nematocyst analysis of Cyanea capillata and Cyanea lamarckii (Scyphozoa, Cnidaria). Scientia Marina 61: 313–344.Google Scholar
  21. Östman, C., A. Aquirre, M. Myrdal, P. Nyvall, J. Lindström & M. Björklund, 1995. Nematocysts in Tubularia larynx (Cnidaria, Hydrozoa) from Scandinavia and the northern coast of Spain. Scientia Marina 59: 165–179.Google Scholar
  22. Purcell, J. E., 1984. The functions of nematocysts in prey capture by epipelagic siphonophores (Coelenterata, Hydrozoa). Biological Bulletin 166: 310–327.CrossRefGoogle Scholar
  23. Purcell, J. E., 2003. Predation on zooplankton by large jellyfish, Aurelia labiata, Cyanea capillata and Aequorea aequorea, in Prince William Sound, Alaska. Marine Ecology Progress Series 246: 137–152.CrossRefGoogle Scholar
  24. Purcell, J. E., 2005. Climate effects on formation of jellyfish and ctenophore blooms: a review. Journal of the Marine Biological Association of the UK 85: 461–476.CrossRefGoogle Scholar
  25. Purcell, J. E. & M. N. Arai, 2001. Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451: 27–44.CrossRefGoogle Scholar
  26. Purcell, J. E. & M. B. Decker, 2005. Effects of climate on relative predation by scyphomedusae and ctenophores on copepods in Chesapeake Bay during 1987–2000. Limnology and Oceanography 50: 376–387.Google Scholar
  27. Purcell, J. E. & C. E. Mills, 1988. The correlation between nematocyst types and diets in pelagic Hydrozoa. In Hessinger, D. A. & H. M. Lenhoff (eds), The Biology of Nematocysts. Academic Press, San Diego: 463–485.Google Scholar
  28. Purcell, J. E., S.-I. Uye & W.-T. Lo, 2007. Anthropogenic causes of jellyfish blooms and direct consequences for humans: a review. Marine Ecology Progress Series 350: 153–174.CrossRefGoogle Scholar
  29. Purcell, J. E., R. A. Hoover & N. T. Schwarck, 2009. Interannual variation of strobilation by the scyphozoan Aurelia labiata in relation to polyp density, temperature, salinity, and light conditions in situ. Marine Ecology Progress Series 375: 139–149.CrossRefGoogle Scholar
  30. Radwan, F. F. Y., J. W. Burnett, D. A. Bloom, T. Coliano, M. E. Eldefrawi, H. Erderly, L. Aurelian, M. Torres & E. P. Heimer-de la Cotera, 2001. A comparison of the toxinological characteristics of two Cassiopea and Aurelia species. Toxicon 39: 245–257.CrossRefPubMedGoogle Scholar
  31. Rifkin, J. & R. Endean, 1983. The structure and function of the nematocysts of Chironex fleckeri Southcott, 1956. Cell and Tissue Research 233: 563–577.CrossRefPubMedGoogle Scholar
  32. Segura-Puertas, L., G. Avila-Soria, J. Sanchez-Rodgriguez, M. Ramos-Aguilar & J. W. Burnett, 2002. Some toxinological aspects of Aurelia aurita (Linne) from the Mexican Caribbean. Journal of Venomous Animals and Toxins 8: 113–128.CrossRefGoogle Scholar
  33. Šuput, D., 2009. In vivo effects of cnidarian toxins and venoms. Toxicon 54: 1190–1200.CrossRefPubMedGoogle Scholar
  34. Tibballs, J., 2006. Australian venomous jellyfish, envenomation syndromes, toxins and therapy. Toxicon 48: 830–859.CrossRefPubMedGoogle Scholar
  35. Weill, R., 1934. Contribution à ľ étude des cnidaires et de leurs nématocystes. Travaux de la Station Zoologique de Wimereux 10(11): 1–701.Google Scholar
  36. Wiebring, A., H. Helmholz, I. Sötje, S. Lassen, A. Prange & H. Tiemann, 2010. A new method for the separation of different types of nematocysts from Scyphozoa and investigation of proteinaceous toxins utilizing laser catapulting and subsequent mass spectrometry. Marine Biotechnology. doi: 10.1007/s10126-010-9261-7.

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Annika Wiebring
    • 1
    • 2
  • Heike Helmholz
    • 1
  • Stephan Lassen
    • 1
  • Andreas Prange
    • 1
  • Gerhard Jarms
    • 2
  1. 1.Department for Marine Bioanalytical ChemistryGKSS Research Centre, Institute for Coastal ResearchGeesthachtGermany
  2. 2.Department of Biology, Biocenter Grindel and Zoological MuseumUniversity of HamburgHamburgGermany

Personalised recommendations