, Volume 645, Issue 1, pp 179–191 | Cite as

Degradation of the Adriatic medusa Aurelia sp. by ambient bacteria

  • Tinkara Tinta
  • Alenka Malej
  • Maja Kos
  • Valentina TurkEmail author


The decomposition of jellyfish after major bloom events results in the release of large amounts of nutrients, which can significantly alter nutrient and oxygen dynamics in the surrounding environment. The response of the ambient bacterial community to decomposing jellyfish biomass was evaluated in two marine ecosystems, the Gulf of Trieste (northern Adriatic Sea) and Big Lake (Mljet Island, southern Adriatic Sea). The major difference between these two ecosystems is that Aurelia sp. medusae occur throughout the year in the oligotrophic Big Lake, whereas in the mesotrophic Gulf of Trieste, they occur only seasonally and often as blooms. Addition of homogenized jellyfish to enclosed bottles containing ambient water from each of these systems triggered considerable changes in the bacterial community dynamics and in the nutrient regime. The high concentrations of protein, dissolved organic phosphorous (DOP), and PO4 3− immediately after homogenate addition stimulated increase in bacterial abundance and production rate, coupled with NH4 + accumulation in both ecosystems. Our preliminary results of the bacterial community structure, as determined with denaturing gradient gel electrophoresis, indicated differences in the bacterial community response between the two ecosystems. Despite divergence in the bacterial community responses to jellyfish homogenate, increased bacterial biomass and growth rates in both distinctive marine systems indicate potentially significant effects of decaying jellyfish blooms on microbial plankton.


Aurelia sp. Decomposition Nutrients Bacterioplankton Jellyfish 



This research was financed by the Ministry of Higher Education, Science and Technology of the R Slovenia (P1-0237), and bilateral cooperation with the Ministry of Science, Education and Sport of the Croatia. We are grateful to the Mljet National Park authorities for their hospitality during field work. Also thanks to A. Benović, D. Lučić, V. Onofri, J. Forte, and T. Makovec for their help in field work. We are grateful to anonymous reviewers for their critical and valuable comments on the manuscript.


  1. Alldredge, A. L., 1972. Abandoned larvacean houses: a unique food source in the pelagic environment. Science 177: 885–887.CrossRefPubMedGoogle Scholar
  2. Alldredge, A. L., 1976. Discarded appendicularian houses as sources of food, surface habitats and particulate organic matter in planktonic environments. Limnology and Oceanography 21: 14–23.CrossRefGoogle Scholar
  3. Alldredge, A. L., 2005. The contribution of discarded appendicularian houses to the flux of particulate organic carbon from oceanic surface waters. In Gorsky, G., M. J. Youngbluth & D. Deibel (eds), Response of Marine Ecosystems to Global Change. Contemporary Publishing International, Paris, France: 309–326.Google Scholar
  4. Alldredge, A. L. & M. J. Youngbluth, 1985. The significance of macroscopic aggregates (marine snow) as sites of heterotrophic bacterial production in the mesopelagic zone of the subtropical Atlantic. Deep Sea Research 32: 1445–1456.CrossRefGoogle Scholar
  5. Alldredge, A. L., J. Cole & D. A. Caron, 1986. Production of heterotrophic bacteria inhabiting organic aggregates (marine snow) from surface waters. Limnology and Oceanography 31: 68–78.CrossRefGoogle Scholar
  6. Alvarez-Colombo, G., A. Benović, A. Malej, D. Lučić, T. Makovec, V. Onofri, M. Acha, A. Madriolas & H. Mianzan, 2008. Acoustic survey of a jellyfish-dominated ecosystem (Mljet Island, Croatia). Hydrobiologia 616: 99–111.CrossRefGoogle Scholar
  7. Arai, M. N., 1997. A Functional Biology of Scyphozoa. Chapman & Hall, London.Google Scholar
  8. Arai, M. N., 2005. Predation on pelagic coelenterates: a review. Journal of the Marine Biological Association of the United Kingdom 85: 523–536.CrossRefGoogle Scholar
  9. Azam, F. & F. Malfatti, 2007. Microbial structuring of marine ecosystems. Nature Reviews Microbiology 5: 782–791.CrossRefPubMedGoogle Scholar
  10. Båmstedt, U. & H. R. Skjoldal, 1980. RNA concentration of zooplankton: relationship with size and growth. Limnology and Oceanography 25: 304–316.CrossRefGoogle Scholar
  11. Benović, A., D. Lučić, V. Onofri, M. Peharda, M. Carić, N. Jasprica & S. Bobanović-Čoli, 2000. Ecological characteristics of the Mljet Island seawater lakes (Southern Adriatic Sea) with special reference to their resident populations of medusae. Scientia Marina 64: 197–206.Google Scholar
  12. Billett, D. S. M., B. J. Bett, C. L. Jacobs, I. P. Rouse & B. D. Wigham, 2006. Mass deposition of jellyfish in the deep Arabian Sea. Limnology and Oceanography 51: 2077–2083.CrossRefGoogle Scholar
  13. Boström, K. H., K. Simu, A. Hagström & L. Riemann, 2004. Optimization of DNA extraction for quantitative marine bacterioplankton community analysis. Limnology and Oceanography Methods 2: 365–373.Google Scholar
  14. Bradford, M. M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.CrossRefPubMedGoogle Scholar
  15. Carlson, C. A., S. J. Giovannoni, D. A. Hansell, S. J. Goldberg, R. Parsons, M. P. Otero, K. Vergin & B. R. Wheeler, 2002. Effect of nutrient amendments on bacteriplankton production, community structure and DOC utilization in the northwestern Sargasso Sea. Aquatic Microbial Ecology 30: 19–36.CrossRefGoogle Scholar
  16. Caron, D. A., P. G. Davis, L. P. Madin & J. Mc N. Sieburth, 1982. Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science 218: 795–797.CrossRefPubMedGoogle Scholar
  17. Caron, D. A., E. L. Lim, R. W. Sanders, M. R. Dennett & U. G. Berninger, 2000. Responses of bacterioplankton and phytoplankton to organic carbon and inorganic nutrient additions in contrasting oceanic ecosystems. Aquatic Microbial Ecology 22: 175–184.CrossRefGoogle Scholar
  18. Cherrier, J. & J. E. Bauer, 2004. Bacterial utilization of transient plankton-derived dissolved organic carbon and nitrogen inputs in surface ocean waters. Aquatic Microbial Ecology 35: 229–241.CrossRefGoogle Scholar
  19. Clarke, A., L. J. Holmes & D. J. Gore, 1992. Proximate and elemental composition of gelatinous zooplankton from the Southern Ocean. Journal of Experimental Marine Biology and Ecology 155: 55–68.CrossRefGoogle Scholar
  20. Don, R. H., P. T. Cox, B. J. Wainwright, K. Baker & J. S. Mattic, 1991. ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Research 19: 4008.CrossRefPubMedGoogle Scholar
  21. Giovannoni, S. J., H. J. Tripp, S. Givan, et al., 2005. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309: 1242–1245.CrossRefPubMedGoogle Scholar
  22. Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of Seawater Analysis. Verlag Chemie, Weinheim.Google Scholar
  23. Hamner, W. M. & M. N. Dawson, 2009. A review and synthesis on the systematic and evolution of jellyfish blooms: advantageous aggregations and adaptive assemblages. Hydrobiologia 616: 161–191.CrossRefGoogle Scholar
  24. Hansson, L. J. & B. Norrman, 1995. Release of dissolved organic carbon (DOC) by scyphozoan jellyfish Aurelia aurita and its potential influence on the production of planktonic bacteria. Marine Biology 121: 527–532.CrossRefGoogle Scholar
  25. Hollibaugh, J. T. & F. Azam, 1983. Microbial degradation of dissolved proteins in seawater. Limnology and Oceanography 28: 1104–1116.CrossRefGoogle Scholar
  26. Hoppe, H. G., S. J. Kim & K. Gocke, 1988. Microbial decomposition in aquatic environments: combined process of extracellular enzyme activity and substrate uptake. Applied and Environmental Microbiology 54: 784–790.PubMedGoogle Scholar
  27. Houghton, J. D. R., T. K. Doyle, M. W. Wilson, J. Davenport & G. C. Hays, 2006. Jellyfish aggregations and leatherback turtle foraging patterns in a temperate environment. Ecology 87: 1967–1972.CrossRefPubMedGoogle Scholar
  28. Keil, R. G. & D. L. Kirchman, 1993. Dissolved combined amino acids: chemical form and utilization by marine bacteria. Limnology and Oceanography 38: 1256–1270.CrossRefGoogle Scholar
  29. Kirchman, D. L., 2008. Introduction and overview. In Kirchman, D. L. (ed.), Microbial Ecology of the Ocean, 2nd edn. Wiley-Blackwell, New Jersey.Google Scholar
  30. Kirchman, D. L., E. K’Nees & R. Hodson, 1985. Leucin incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Applied and Environmental Microbiology 49: 599–607.PubMedGoogle Scholar
  31. Kremer, P., 1975. Excretion and body composition of the ctenophore Mnemiopsis leidyi (A. Agassiz): comparison and consequences. In 10th European Symposium on Marine Biology, Ostend, Belgium: 351–362.Google Scholar
  32. Kremer, P., 1977. Respiration and excretion by the ctenophore Mnemiopsis leidyi. Marine Biology 71: 149–156.CrossRefGoogle Scholar
  33. Larson, R. J., 1986. Water content, organic content, and carbon and nitrogen composition of medusa from the northeast Pacific. Journal of Experimental Marine Biology and Ecology 99: 107–120.CrossRefGoogle Scholar
  34. Lee, S. H. & J. A. Fuhrman, 1987. Relationships between biovolume and biomass of naturally derived bacterioplankton. Applied and Environmental Microbiology 53: 1298–1303.PubMedGoogle Scholar
  35. Lo, W. T. & I. L. Chen, 2008. Population succession and feeding of scyphomedusae, Aurelia aurita, in a eutrophic tropical lagoon in Taiwan. Estuarine Coastal and Shelf Science 76: 227–238.CrossRefGoogle Scholar
  36. Lucas, C. H., 2001. Reproduction and life history strategies of the common jellyfish Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451: 229–246.CrossRefGoogle Scholar
  37. Malej, A., V. Turk, D. Lučić & A. Benović, 2007. Direct and indirect trophic interactions of Aurelia sp. (Scyphozoa) in a stratified marine environment (Mljet Lakes, Adriatic Sea). Marine Biology 151: 827–841.CrossRefGoogle Scholar
  38. Martinez, L., D. C. Smith, G. F. Steward & F. Azam, 1996. Variability in the ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquatic Microbial Ecology 10: 223–230.CrossRefGoogle Scholar
  39. Mills, C. E., 1995. Medusae, siphonophores, and ctenophores as planktovorous predators in changing global ecosystem. ICES Journal of Marine Science 52: 575–581.CrossRefGoogle Scholar
  40. Muyzer, G. & K. Smalla, 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73: 127–141.CrossRefPubMedGoogle Scholar
  41. Muyzer, G., E. D. Waal & A. G. Uitterlinden, 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59: 695–700.PubMedGoogle Scholar
  42. Passow, U. & A. L. Alldredge, 1994. Distribution, size, and bacterial colonization of transparent exopolymer particles (TEP) in the ocean. Marine Ecology Progress Series 113: 185–198.CrossRefGoogle Scholar
  43. Passow, U., A. L. Alldredge & B. E. Logan, 1994. The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep Sea Research 41: 335–357.CrossRefGoogle Scholar
  44. Pinhassi, J., F. Azam, J. Hemphala, R. A. Long, J. Martinez, U. L. Zweifel & A. Hagstrom, 1999. Coupling between bacterioplankton species composition, population dynamics, and organic matter degradation. Aquatic Microbial Ecology 17: 13–26.CrossRefGoogle Scholar
  45. Pitt, K. A., D. T. Welsh & R. H. Condon, 2009. Influence of jellyfish blooms on carbon, nitrogen and phosphorous cycling and plankton production. Hydrobiologia 616: 133–149.CrossRefGoogle Scholar
  46. Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.CrossRefGoogle Scholar
  47. Purcell, J. E. & M. V. Sturdevant, 2001. Prey selection and dietary overlap among zooplanktivorous jellyfish and juvenile fishes in Prince William Sound, Alaska. Marine Ecology Progress Series 210: 67–83.CrossRefGoogle Scholar
  48. Purcell, J. E., A. Malej & A. Benović, 1999. Potential links of jellyfish to eutrophication and fisheries. In Malone, T. C., A. Malej, L. W. Harding, N. Smodlaka & R. E. Turner (eds), Ecosystems at the Land-Sea Margin: Drainage Basin to Coastal Sea (Coastal and Estuarine Studies, 55). American Geophysical Union, Washington, DC: 241–263.Google Scholar
  49. Riemann, L., J. Titelman & U. Båmstedt, 2006. Links between jellyfish and microbes in a jellyfish dominated fjord. Marine Ecology Progress Series 325: 29–42.CrossRefGoogle Scholar
  50. Schafer, H., L. Bernard, C. Courties, et al., 2001. Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in genetic diversity of bacterial populations. FEMS Microbiology Ecology 34: 243–253.CrossRefPubMedGoogle Scholar
  51. Schneider, G., 1989. The common jellyfish Aurelia aurita: standing stock, excretion and nutrient generation in the Kiel Bight, western Baltic. Marine Biology 100: 507–514.CrossRefGoogle Scholar
  52. Simon, M. & F. Azam, 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series 51: 201–213.CrossRefGoogle Scholar
  53. Simon, M., A. L. Alldredge & F. Azam, 1990. Bacterial carbon dynamics on marine snow. Marine Ecology Progress Series 65: 205–211.CrossRefGoogle Scholar
  54. Smith, D. C. & F. Azam, 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucin. Marine Microbial Food Webs 6: 107–114.Google Scholar
  55. Stoecker, D. K., A. E. Michaels & L. H. Davis, 1987. Grazing by the jellyfish, Aurelia aurita, on microplankton. Journal of Plankton Research 9: 901–915.CrossRefGoogle Scholar
  56. Sullivan, B. K., J. R. Garcia & G. Klein-MacPhee, 1994. Prey selection by the scyphomedusan predator Aurelia aurita. Marine Biology 121: 335–341.CrossRefGoogle Scholar
  57. Thingstad, T. F., Å. Hagström & F. Rassoulzdadegan, 1997. Accumulation of degradable DOC in surface waters: it is caused by malfunctioning microbial loop? Limnology and Oceanography 42: 398–404.CrossRefGoogle Scholar
  58. Titelman, J., L. Riemann, T. A. Sørnes, T. Nilsen, B. Griekspoor & U. Båmstedt, 2006. Turnover of dead jellyfish: stimulation and retardation on microbial activity. Marine Ecology Progress Series 325: 43–58.CrossRefGoogle Scholar
  59. Turk, V., D. Lučić, V. Flander-Putrle & A. Malej, 2008. Feeding of Aurelia sp. (Scyphozoa) and links to the microbial food web. Marine Ecology 29: 495–505.CrossRefGoogle Scholar
  60. West, E. J., D. T. Welsh & K. A. Pitt, 2009. Influence of decomposing jellyfish on the sediment oxygen demand and nutrient dynamics. Hydrobiologia 616: 151–160.CrossRefGoogle Scholar
  61. Yamamoto, J., M. Hirose, T. Ohtani, K. Sugimoto, K. Hirase, N. Shimamoto, T. Shimura, N. Honda, Y. Fujimori & T. Mukai, 2008. Transportation of organic matter to the sea floor by carrion falls of the giant jellyfish Nemopilema nomurai in the Sea of Japan. Marine Biology 153: 311–317.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Tinkara Tinta
    • 1
  • Alenka Malej
    • 1
  • Maja Kos
    • 1
  • Valentina Turk
    • 1
    Email author
  1. 1.National Institute of Biology, Marine Biology StationPiranSlovenia

Personalised recommendations