, Volume 644, Issue 1, pp 371–384 | Cite as

A multimetric diatom index to assess the ecological status of coastal Galician rivers (NW Spain)

  • Cristina DelgadoEmail author
  • Isabel Pardo
  • Liliana García
Primary research paper


There are many rivers in northwest Spain as a consequence of the mountainous landscape and the granitic geology subjected to Atlantic influences. Water and epilithic diatoms samples were collected at 72 sites in Galicia flowing into the Atlantic Ocean and Cantabrian Sea in summer 2002–2003 and spring 2004. These sites included minimally disturbed sites, defined as reference sites, and impacted sites which were influenced by different human pressures. We used the diatom assemblages to calculate diatom indices using the Omnidia software, but we also developed new metrics based on the similarity of species composition in reference sites. The response of the metrics was tested in relation to physicochemical variables. We developed a diatom multimetric index (MDIAT) as a combination of metric values. The sensitivity of the MDIAT to organic and nutrient stressors supports the use of this index to classify the ecological status of Galician rivers. The MDIAT showed higher correlations with some variables and nutrients than the individual metrics. According to the MDIAT, 69% of the sites sampled in Galician coastal rivers achieve good ecological status. The MDIAT has been developed specifically for Galician granitic rivers (NW Spain), and has been intercalibrated at the European level in the Central Baltic Rivers GIG. Our study validates the application of this multimetric index to evaluate the water quality in coastal Galician rivers.


Coastal Galician rivers Ecological status Diatoms Multimetric index Water Framework Directive 



This article complemented some of the results obtained by a project dealing with the application of the Water Framework Directive in Galician coastal area. The financial support for this study has been provided by Augas de Galicia (Xunta de Galicia, Spain), and this also included the support of the University of Vigo (Spain). We are grateful to the editor and the reviewers for their criticism and comments that improved the final manuscript. We thank M. Kelly for improving the language and content of the article, M.H. Novais for their commentaries, M. Dominguez for the help with the chemical analysis and L.M. González for the help with figures. We also thank C. Veiga, A. Nebra, M. Arndal and Sofia for their assistance with sample collection and for their friendship.


  1. American Public Health Association (APHA), 1989. Standard Methods for the Examination of Water, Sewage, and Wastewater, 17th ed. American Public Health Association, New York.Google Scholar
  2. Atazadeh, I., M. Sharifi & M. G. Kelly, 2007. Evaluation of the trophic diatom index for assessing water quality in River Gharasou, western Iran. Hydrobiologia 589: 165–173.CrossRefGoogle Scholar
  3. Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. EPA 841-B-99–002, 2nd ed. US Environmental Protection Agency, Office of Water, Washington, DC.Google Scholar
  4. Bossard, M., J. Feranec & J. Otahel, 2000. CORINE land cover technical guide – Addendum 2000. European Environment Agency, Copenhagen: 105.Google Scholar
  5. Cemagref, 1982. Etude des Méthodes Biologiques d’Appréciation Quantitative de la Qualité des Eaux. Rapport Q.E. Lyon, Agence de ‘Eau Rhône-Méditerranée-Corse – Cemagref, Lyon, France.Google Scholar
  6. CEN, 2003. Water Quality – Guidance Standard for Routine Sampling and Pre-treatment of Benthic Diatoms from Rivers, EN 13 946. European Committee for Standardization, Brussels: 14.Google Scholar
  7. Coring E., S. Schneider, A. Hamm & G. Hofmann, 1999. Durchgehendes Trophiesystem auf der Grundlage der Trophieindikaation mit Kieselalgen. Deutscher Verband für Wasserwirtschaft und Kulturbau e.V., Koblenz: 219.Google Scholar
  8. Coste M. & H. Ayphassorho, 1991. Étude de la qualité des eaux du Bassin Artois-Picardie à l’aide des communautés de diatomées benthiques (Application des indices diatomiques). Raport Cemagref. Bordeaux – Agence de l’Eau Artois-Picardie, Douai: 277.Google Scholar
  9. De Nicola, D. M., 2000. A review of diatoms found in highly acidic environments. Hydrobiologia 433: 111–122.CrossRefGoogle Scholar
  10. Dell’Uomo, A., 1996. Assessment of water quality of an Apennine river as a pilot study for Diatom-based monitoring of Italian watercourses. In Whitton, B. A. & E. Rott (eds), Use of Algae for Monitoring Rivers II. Institut für Botanik, Universität Innsbruck, Innsbruck: 65–73.Google Scholar
  11. Descy, J. P., 1979. A new approach to water quality estimation using diatoms. Nova Hedwigia 64: 305–323.Google Scholar
  12. Descy, J. P. & M. Coste, 1991. A test of methods for assessing water quality based on diatoms. Verhandlungen der Internationalischen Vereinigung für Theoretische und Angewandte Limnologie 24: 2112–2116.Google Scholar
  13. Dodds, W. K., 2006. Eutrophication and trophic state in rivers and streams. Limnology and Oceanography 51: 671–680.Google Scholar
  14. Ector, L., 1992. Control de la calidad biológica de las aguas superficiales en la red de aforos de Galicia-costa mediante diatomeas bénticas. In Calidad del agua en las estaciones de aforo de los ríos de Galicia. Años hidrológicos 1989–90, 1990–91. Fundación Empresa Universidad Gallega (FEUGA). Consellería de Ordenación do Territorio e Obras Públicas, Xunta de Galicia.Google Scholar
  15. Eloranta, P. & J. Soininen, 2002. Ecological status of some Finnish rivers evaluated using benthic diatom communities. Journal of Applied Phycology 14: 1–7.CrossRefGoogle Scholar
  16. European Union, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L327: 1–73.Google Scholar
  17. Fore, L. S. & C. Grafe, 2002. Using diatoms to assess the biological condition of large rivers in Idaho (U.S.A.). Freshwater Biology 47: 2015–2037.CrossRefGoogle Scholar
  18. García, L., C. Delgado & I. Pardo, 2008. Seasonal changes in benthic communities in a temporary stream of Ibiza (Balearic Islands, Spain). Limnetica 27: 259–272.Google Scholar
  19. Gómez, N. & M. Licursi, 2001. The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquatic Ecology 35: 173–181.CrossRefGoogle Scholar
  20. Hering, D., R. K. Johnson, S. Kramm, S. Schmutz, K. Szoszkiewicz & P. F. M. Verdonschot, 2006a. Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwater Biology 51: 1757–1785.CrossRefGoogle Scholar
  21. Hering, D., C. K. Feld, O. Moog & T. Ofenböck, 2006b. Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystem: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia 566: 311–324.CrossRefGoogle Scholar
  22. Johnson, R. K., D. Hering, M. T. Furse & R. T. Clarke, 2006. Detection of ecological change using multiple organism groups: metrics and uncertainty. Hydrobiologia 566: 115–137.CrossRefGoogle Scholar
  23. Kelly, M. G., 1998. Use of the trophic diatom index to monitor eutrophication in rivers. Water Research 32: 236–242.CrossRefGoogle Scholar
  24. Kelly, M. G., 2002. Role of benthic diatoms in the implementation of the Urban Wastewater Treatment Directive in the River Wear, North-East England. Journal of Applied Phycology 14: 9–18.CrossRefGoogle Scholar
  25. Kelly, M. G. & B. A. Whitton, 1995. The trophic diatom index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 433–444.CrossRefGoogle Scholar
  26. Kelly, M. G. & B. A. Whitton, 1998. Biological monitoring of eutrophication in rivers. Hydrobiologia 384: 55–67.CrossRefGoogle Scholar
  27. Kelly, M., S. Juggings, R. Guthrie, S. Pritchard, J. Jamieson, B. Rippey, H. Hirst & M. Jallop, 2008. Assessment of ecological status in U.K. rivers using diatoms. Freshwater Biology 53: 403–422.Google Scholar
  28. Kelly, M., C. Bennett, M. Coste, C. Delgado, F. Delmas, L. Denys, L. Ector, C. Fauville, M. Ferreol, M. Golub, A. Jarlman, A. Kahlert, J. Lucey, B. Ni Chathain, I. Pardo, P. Pfister, J. Picinska-Faltynowicz, C. Schranz, J. Schaumburg, J. Tison, H. van Dam & S. Vilbaste, 2009. A comparison of national approaches to setting ecological status boundaries in phytobenthos assessment for the European Water Framework Directive: results of an intercalibration exercise. Hydrobiologia 621: 169–182.CrossRefGoogle Scholar
  29. King, L., P. Barker & R. I. Jones, 2000. Epilithic algal communities and their relationship to environmental variables in Lakes of the English Lake District. Freshwater Biology 45: 425–442.CrossRefGoogle Scholar
  30. Krammer, K. & H. Lange-Bertalot, 1986–1991. Bacillariophyceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, vol. 1–5. Fischer-Verlag, Stuttgart.Google Scholar
  31. Kwandrans, J., P. Eloranta, B. Kawecka & K. Wojtan, 1998. Use of benthic diatom communities to evaluate water quality in rivers of southern Poland. Journal of Applied Phycology 10: 193–201.CrossRefGoogle Scholar
  32. Leclercq, L. & B. Maquet, 1987. Deux nouveaux indices chimique et diatomique de qualité d’eau courante. Application au Samson et à ses affluents (bassin de la Meuse belge). Comparaison avec d’autres indices chimiques, biocènotiques et diatomiques. Institut Royal des Sciences Naturelles de Belgique, document de travail 28: 113.Google Scholar
  33. Lecointe, C., M. Coste & J. Prygiel, 1993. ‘OMNIDIA’ software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia 269(270): 509–513.CrossRefGoogle Scholar
  34. Lecointe C., M. Coste & J. Prygiel, 2003. Omnidia 3.2 Diatom Index Software including diatom database with taxonomic names, reference and codes of 11643 diatom taxa.Google Scholar
  35. Leira, M. & S. Sabater, 2005. Diatom assemblages distribution in Catalan rivers, NE Spain, in relation to chemical and physiographical factors. Water Research 39: 73–82.CrossRefPubMedGoogle Scholar
  36. Leland, H. V., 1995. Distribution of benthic diatoms in the Yakima River Basin, Washington, in relation to physical and chemical factors. Canadian Journal of Fisheries and Aquatic Sciences 55: 1108–1129.CrossRefGoogle Scholar
  37. Lorenzen, C. J., 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnology and Oceanography 12: 342–346.CrossRefGoogle Scholar
  38. Morais, M., P. Pinto, P. Guilherme, J. Rosado & I. Antunes, 2004. Assessment of temporary streams: the robustness of metric and multimetric indices under different hydrological conditions. Hydrobiologia 516: 229–249.CrossRefGoogle Scholar
  39. Muxika, I., A. Borja & J. Bald, 2007. Using historical data, expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive. Marine Pollution Bulletin 55: 16–29.CrossRefPubMedGoogle Scholar
  40. Oberdorff, T. & R. M. Hughes, 1992. Modification of an index of biotic integrity based on fish assemblages to characterize rivers of the Seine basin, France. Hydrobiologia 228: 117–130.CrossRefGoogle Scholar
  41. Ofenböck, T., O. Moog, J. Gerritsen & M. Barbour, 2004. A stressor specific multimetric approach for monitoring running waters in Austria using benthic macro-invertebrates. Hydrobiologia 516: 251–268.CrossRefGoogle Scholar
  42. Pan, Y., R. J. Stevenson, B. H. Hill, P. R. Kaufmann & A. T. Herlihy, 1999. Spatial patterns and ecological determinants of benthic algal assemblages in mid-Atlantic streams, USA. Journal of Applied Phycology 35: 460–468.CrossRefGoogle Scholar
  43. Pardo, I. & M. Álvarez, 2006. Comparison of resource and consumer dynamics in Atlantic and Mediterranean streams. Limnetica 25: 271–286.Google Scholar
  44. Pardo, I., A. M. Olsen, C. Delgado, L. García, A. Nebra & M. Domínguez, 2005. Implantación da Directiva Marco da Auga 2000/60/CE no Ambito territorial Galicia-Costa. Technical report.Google Scholar
  45. Passy, S. I. & R. W. Bode, 2004. Diatom model affinity (DMA), a new index for water quality assessment. Hydrobiologia 524: 241–251.CrossRefGoogle Scholar
  46. Penalta, M. & M. C. López, 2007. Diatomeas y calidad del agua de los ríos del Macizo Central Gallego (Ourense N.O. España) mediante la aplicación de índices diatomológicos. Limnetica 26: 351–358.Google Scholar
  47. Pipp, E., 2002. A regional diatom-based trophic state indication system for running water sites in Upper Austria and its overregional applicability. Verhandlungen der Internationalischen Vereinigung für Theoretische und Angewandte Limnologie 27: 3376–3380.Google Scholar
  48. Prygiel, J. & M. Coste, 1993. Utilisation des indices diatomiques pour la mesure de la qualité des eaux du bassin Artois-Picardie: bilan et perspectives. Annals of Limnology 29: 255–267.CrossRefGoogle Scholar
  49. Prygiel, J. & M. Coste, 1999. Progress in the use of diatoms for monitoring rivers in France. In Prygiel, J., B. A. Whitton & J. Bukowska (eds), Use of Algae for Monitoring Rivers III. Agence de l’Eau Artois-Picardie, Douai: 39–56.Google Scholar
  50. Prygiel, J., L. Lévêque & R. Iserentant, 1996. Un nouvel índice diatomique pratique pour l’évaluation de la qualité des eaux en réseau de surveillance. Revue des Sciences de l’eau 1: 97–113.Google Scholar
  51. Prygiel, J., P. Carpentier, S. Almeida, M. Coste, J. C. Druart, L. Ector, D. Guillard, M. A. Honoré, R. Iserentant, P. Ledeganck, C. Lalanne-Cassou, C. Lesniak, I. Mercier, P. Moncaut, M. Nazart, N. Nouchet, F. Peres, V. Peeters, F. Rimet, A. Rumeau, S. Sabater, F. Straub, M. Torrisi, L. Tudesque, B. Van de Vijver, H. Vidal, J. Vizinet & N. Zydek, 2002. Determination of the biological diatom index (IBD NF T 90–354): results of an intercomparison exercise. Journal of Applied Phycology 14: 27–39.CrossRefGoogle Scholar
  52. Renberg, I., 1990. A procedure for preparing large sets of diatom slides from sediment cores. Journal of Paleolimnology 4: 87–90.CrossRefGoogle Scholar
  53. Rott E., E. Pipp, P. Pfister, H. van Dam, K. Ortler, N. Binder & K. Pall, 1999. Indikationslisten für Aufwuchsalgen in Österreichischen Fliessgewassern. Teil 2: Trophieindikation. Bundesministerium fuer Land und Forstwirtschaft, Wien: 248.Google Scholar
  54. Rott, E., E. Pipp & P. Pfister, 2003. Diatom methods developed for river quality assessment in Austria and a cross-check against numerical trophic indication methods used in Europe. Algological Studies 110: 91–115.CrossRefGoogle Scholar
  55. Sala, S., S. Duque, M. Nuñez-Avellaneda & A. Lamaro, 2002. Diatoms from the Colombian Amazonia. Cryptogamie Algologie 23: 75–99.CrossRefGoogle Scholar
  56. Sládecek, V., 1986. Diatoms as indicators of organic pollution. Acta Hydrochimica et Hydrobiologica 14: 555–566.CrossRefGoogle Scholar
  57. Snoeijs, P., S. Busse & M. Potapova, 2002. The importance of diatom cell size in community analysis. Journal of Phycology 38: 265–272.CrossRefGoogle Scholar
  58. Springe, G., L. Sandin, A. Briede & A. Skuja, 2006. Biological quality metrics: their variability and appropriate scale for assessing streams. Hydrobiologia 566: 153–172.CrossRefGoogle Scholar
  59. Steinberg, C. & S. Schiefele, 1988. Biological indication of trophy and pollution of running waters. Zeitschrift fuer Wasser und Abevasser Forschung 21: 227–234.Google Scholar
  60. Stoddard, J. L., D. P. Larsen, C. P. Hawkins, R. K. Johson & R. H. Norris, 2006. Setting expectations for the ecological condition of streams: the concept of reference condition. Ecological Applications 16: 1267–1276.CrossRefPubMedGoogle Scholar
  61. ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57: 255–289.CrossRefGoogle Scholar
  62. Tison, J., Y. S. Park, M. Coste, J. G. Wasson, L. Ector, F. Rimet & F. Delmas, 2005. Typology of diatom communities and the influence of hydro-ecoregions: a study on the French hydrosystem scale. Water Research 39: 3177–3188.CrossRefPubMedGoogle Scholar
  63. van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Netherlands Journal of Aquatic Ecology 28: 117–133.CrossRefGoogle Scholar
  64. van de Bund, W. J. (ed.), 2009. Water Framework Directive intercalibration technical report. Part 1: Rivers. JRC, Scientific and Chemical Reports. ISSN: 1018-5593: 179.Google Scholar
  65. Wallin, M., T. Wiederholm & R. K. Johnson, 2005. Guidance on Establishing Reference Conditions and Ecological Status Class Boundaries for Inland Surface Waters. CIS Working Group 2.3_REFCOND. 93 pp (
  66. Watanabe, T., K. Asai & A. Houki, 1986. Numerical estimation to organic pollution of flowing water by using the epilithic diatom assemblage – diatom assemblage index (DAIpo). The Science of the Total Environment 55: 209–218.CrossRefGoogle Scholar
  67. Wu, J. T., 1999. A generic index of diatom assemblages as bioindicator of pollution in the Keelung River of Taiwan. Hydrobiologia 397: 79–87.CrossRefGoogle Scholar
  68. Wu, J. T. & L. T. Kow, 2002. Applicability of generic index of diatom assemblages for monitoring water pollution in the tropical river Tsanwun (Taiwan). Journal of Applied Phycology 14: 63–69.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Cristina Delgado
    • 1
    Email author
  • Isabel Pardo
    • 1
  • Liliana García
    • 1
  1. 1.Department of Ecology and Animal BiologyUniversity of VigoVigoSpain

Personalised recommendations