, Volume 644, Issue 1, pp 301–312 | Cite as

Growth of Hydrilla verticillata (L.f.) Royle under controlled conditions

  • I. BianchiniJr.Email author
  • M. B. Cunha-Santino
  • J. A. M. Milan
  • C. J. Rodrigues
  • J. H. P. Dias
Primary research paper


Aquatic macrophytes are important resources for the maintenance of trophic chains and in biogeochemical processes, but they can also be deleterious for several uses if present in excess. Hydrilla verticillata was found in the Paraná River (Brazil) after 2005, which requires monitoring owing to the invasive potential of this species. In this study, we measured the growth of H. verticillata under controlled conditions and compared the growth dynamics for the two development strategies (branch and tuber). We show that this species has great potential to develop in tropical (Brazilian) aquatic ecosystems. The parameters from the modelling of the growth kinetics indicated a doubling time of 19.8 days for H. verticillata growing from stems; however, the growth from tubers were much faster, with doubling times ranging from 2.5 to 11 days. The delay for the tubers to sprout caused a decrease in the number of branches of H. verticillata stems. From the growth parameters obtained from the experiments under controlled conditions, we concluded that the high temperature and light availability in most South American reservoirs (including the Porto Primavera Reservoir where it was first recorded) are suitable for H. verticillata to compete and probably displace other native aquatic macrophytes, such as Egeria najas, Egeria densa, and Cerathophyllum demersum. This is a matter of concern because these and other submersed species are commonly found in several natural and man-made South-American aquatic ecosystems, where they are key for biodiversity maintenance.


Aquatic macrophyte Growth model Vegetative reproduction Neotropical reservoir 



This study was support by the Program of Research and Technological Development of the Brazilian Electric Sector (Agreement: National Agency of Electric Energy (ANEEL), CESP and UFSCar; ANEEL proc. no: 0061-011/2006).


  1. Agostinho, A. A., L. E. Miranda, L. M. Bini, L. C. Gomes, S. M. Thomaz & H. I. Suzuki, 1999. Patterns of colonization in neotropical reservoirs, and prognoses on aging. In Tundisi, J. G. & M. Straškraba (eds), Theoretical Reservoir Ecology and Its Applications. Brazilian Academy of Science/IIE/Backhuys, Leiden: 227–265.Google Scholar
  2. APHA, AWWA, & WEF, 1998. American Public Health Association; American Water Works Association and Water Environment Federation. Standard methods for the examination of water and wastewater. Washington, DC: 1193 pp.Google Scholar
  3. Arora, A. & P. K. Singh, 2003. Comparison of biomass productivity and nitrogen fixing potential of Azolla spp. Biomass and Bioenergy 24: 175–178.CrossRefGoogle Scholar
  4. Barko, J. W. & R. M. Smart, 1981. Comparative influences of light and temperature on the growth and metabolism of selected submersed freshwater macrophytes. Ecological Monographs 51: 219–235.CrossRefGoogle Scholar
  5. Bianchini, I. Jr., A. L. Bitar & M. B. Cunha-Santino, 2006. Crescimento de Egeria najas Planchon da lagoa do óleo em condições laboratoriais. In Santos, J. E., J. S. Pires & L. E. Moschini (eds), Estudos Integrados em Ecossistemas—Estação Ecológica de Jataí. FAPESP/Editora UFSCar, São Carlos: 99–111.Google Scholar
  6. Bini, L. M., S. M. Thomaz, K. J. Murphy & A. F. M. Camargo, 1999. Aquatic macrophyte distribution in relation to water and sediment conditions in the Itaipu Reservoir Brazil. Hydrobiologia 415: 147–154.CrossRefGoogle Scholar
  7. Boyd, C. E., 1969a. The nutritive value of tree species of water weeds. Economic Botany 23: 123–127.Google Scholar
  8. Boyd, C. E., 1969b. Production, mineral nutrient absorption, and biochemical assimilation by Justicia americana and Alternanthera philoxeroides. Archiv für Hydrobiologie 66: 139–160.Google Scholar
  9. Camargo, A. F. M., M. M. Pezzato, G. G. Henry-Silva & A. M. Assumpção, 2006. Primary production of Utricularia foliosa, Egeria densa and Cabomba furcata from rivers of the coastal plain of the State of São Paulo, Brazil. Hydrobiologia 570: 35–39.CrossRefGoogle Scholar
  10. Chakrabortty, M. & D. Kushari, 1986. Influence of domestic sewage on growth and nitrogen fixation of Azolla pinnata R. Br. Aquatic Botany 24: 61–68.CrossRefGoogle Scholar
  11. Cook, C. D. K. & R. Lüönd, 1982. A revision of the genus Hydrilla (Hydrocharitaceae). Aquatic Botany 13: 485–504.CrossRefGoogle Scholar
  12. Costa, M. L., M. C. Santos & F. F. Carrapiço, 1999. Biomass characterization of Azolla filiculoides grown in natural ecosystems and wastewater. Hydrobiologia 415: 323–327.CrossRefGoogle Scholar
  13. Doyle, R. D., M. J. Grodowitz, R. M. Smart & C. S. Owens, 2002. Impact of herbivory by Hydrellia pakistanae (Diptera: Ephydriadae) on growth and photosynthetic potential of Hydrilla verticillata. Biological Control 24: 221–229.CrossRefGoogle Scholar
  14. Esteves, F. A., 1979. Die Bedeutung der aquatischen Mackrophyten für den Stoffhaushalt des Schöhsees. I. Die Produktion na Biomasse. Archiv für Hydrobiologie 57: 117–143.Google Scholar
  15. Figueiredo, D. M. & I. Bianchini Jr., 2008. Limnological patterns of the filling and stabilization phases in the Manso multiple-use Reservoir (MT). Acta Limnologica Brasiliensia 20: 277–290.Google Scholar
  16. Forni, C., J. Chen, L. Tancioni & L. M. Grilli Caiola, 2001. Evaluation of the fern Azolla for growth, nitrogen and phosphorus removal from wastewater. Water Research 35: 1592–1598.CrossRefPubMedGoogle Scholar
  17. Greco, M. K. B. & J. R. Freitas, 2002. On two methods to estimate production of Eichhornia crassipes in the eutrophic Pampulha Reservoir (MG, Brazil). Brazilian Journal of Biology 62: 463–471.CrossRefGoogle Scholar
  18. Haller, W. T. & D. L. Sutton, 1975. Community structure and competition between Hydrilla and Vallisneria. Journal of Aquatic Plant Management 13: 48–50.Google Scholar
  19. Havel, J. E., C. E. Lee & M. J. V. Zanden, 2005. Do reservoirs facilitate invasions into landscapes? BioScience 55: 518–525.CrossRefGoogle Scholar
  20. Henry-Silva, G. G. & A. F. M. Camargo, 2005. Interações ecológicas entre as macrófitas aquáticas flutuantes Eichhornia crassipes e Pistia stratiotes. Hoehnea 32: 445–452.Google Scholar
  21. Henry-Silva, G. G., A. F. M. Camargo & M. M. Pezzato, 2008. Growth of free-floating aquatic macrophytes in different concentrations of nutrients. Hydrobiologia 610: 153–160.CrossRefGoogle Scholar
  22. Hershner, C. & K. J. Havens, 2008. Managing invasive aquatic plants in a changing system: strategic consideration of ecosystem services. Conservation Biology 22: 544–550.CrossRefPubMedGoogle Scholar
  23. Jorcin, A., M. G. Nogueira & R. Belmont, 2009. Spatial and temporal distribution of the zoobenthos community during the filling up period of Porto Primavera Reservoir (Paraná River, Brazil). Brazilian Journal of Biology 69: 631–637.CrossRefGoogle Scholar
  24. Jorgensen, S. E., 1994. Fundamentals of Ecological Modelling. Developments in Environmental Modelling, Vol. 19. Elsevier, Amsterdam: 627 pp.Google Scholar
  25. Kahara, S. N. & J. E. Vermaat, 2003. The effect of alkalinity on photosynthesis-light curves and inorganic carbon extraction capacity of freshwater macrophytes. Aquatic Botany 75: 217–227.CrossRefGoogle Scholar
  26. Kasselmann, C., 1995. Aquarienpflanzen. Egen Ulmer GMBH & Co., Stuttgart: 472 pp.Google Scholar
  27. Madeira, P. T., J. A. Coetzee, T. D. Center, E. E. White & P. W. Tipping, 2007. The origin of Hydrilla verticillata recently discovered at a South African dam. Aquatic Botany 87: 176–180.CrossRefGoogle Scholar
  28. Madsen, J. D. & D. H. Smith, 1999. Vegetative spread of dioecious Hydrilla colonies in experimental ponds. Journal of Aquatic Plant Management 37: 25–29.Google Scholar
  29. Maejima, K., S. Kitoh, E. Uheda & N. Shiomi, 2001. Response of 19 Azolla strains to a high concentration of ammonium ions. Plant and Soil 234: 247–252.CrossRefGoogle Scholar
  30. Marcondes, D. A. S., A. L. Mustafá & R. H. Tanaka, 2003. Estudos para manejo integrado de plantas aquáticas no reservatório de Jupiá. In Thomaz, S. M. & L. M. Bini (eds), Ecologia e manjo de macrófitas aquáticas. EDUEM, Maringá: 299–317.Google Scholar
  31. Martins, D., N. V. Costa, M. A. Terra & S. R. Marchi, 2008. Caracterização da comunidade de plantas aquáticas de dezoito reservatórios pertencentes a cinco bacias hidrográficas do estado de São Paulo. Planta Daninha 26: 17–32.Google Scholar
  32. Miller, J. D., W. T. Haller & M. S. Glenn, 1993. Turion production by dioecious Hydrilla in North Florida. Journal of Aquatic Plant Management 31: 101–105.Google Scholar
  33. Mitchell, D. S. (ed.), 1974. Aquatic Vegetation and Its Use and Control. UNESCO, Paris: 135 pp.Google Scholar
  34. Mitchell, D. S. & N. M. Tur, 1975. The rate of growth of Salvinia molesta (S. auriculata Auct.) in laboratory and natural conditions. Journal of Applied Ecology 12: 213–225.CrossRefGoogle Scholar
  35. Mony, C., T. J. Koschnick, W. T. Haller & S. Muller, 2007. Competition between two invasive Hydrocharitaceae (Hydrilla verticillata L. f. and Egeria densa (Planch)) as influenced by sediment fertility and season. Aquatic Botany 86: 236–242.CrossRefGoogle Scholar
  36. Mullin, B. H., L. W. J. Anderson, J. M. DiTomaso, R. E. Eplee & K. D. Getsinger, 2000. Invasive plant species. Council for Agriculture and Science and Technology 13: 1–18.Google Scholar
  37. Murphy, K. J., 1988. Aquatic weed problems and their management: a review I. The worldwide scale of the aquatic weed problem. Crop Protection 7: 232–248.CrossRefGoogle Scholar
  38. Netherland, M. D., 1997. Turion ecology of Hydrilla. Aquatic Plant Management 35: 1–10.Google Scholar
  39. Olguín, E. J., G. Sánchez-Galván & T. Pérez-Pérez, 2007. Assessment of the phytoremediation potential of Salvinia minima Baker compared to Spirodela polyrrhiza in high-strength organic wastewater. Water Air and Soil Pollution 181: 135–147.CrossRefGoogle Scholar
  40. Owens, C. S. & J. D. Madsen, 1998. Phenological studies of carbohydrate allocation in Hydrilla. Journal of Aquatic Plant Management 36: 40–44.Google Scholar
  41. Panigatti, M. C. & M. A. Maine, 2003. Influence of nitrogen species (NH4 + and NO3 ) on the dynamics of P in water-sediment-Salvinia herzogii systems. Hydrobiologia 492: 151–157.CrossRefGoogle Scholar
  42. Pereira, A. M. M., 2004. Influência da velocidade de corrente no tratamento de efluentes de carcinicultura com a macrófita aquática Pistia stratiotes, Dissertation. UNESP, Jaboticabal: 45pp.Google Scholar
  43. Perfound, N. W. & T. T. Earle, 1948. The biology of water hyacinth. Ecological Monographs 18: 448–472.Google Scholar
  44. Pezzato, M. M., 2007. Macrófitas aquáticas submersas: fotossíntese, crescimento e variáveis abióticas da água, Thesis. UFSCar/PPGERN, São Carlos: 118 pp.Google Scholar
  45. Pieterse, A. H., H. P. M. Staphorst & J. A. C. Verkleij, 1984. Some effects of nitrogen and phosphorus concentration on the phenology of Hydrilla verticillata (L. f.) Royle. Journal of Aquatic Plant Management 22: 62–63.Google Scholar
  46. Pistori, R. E. T., A. F. M. Camargo & G. G. Henry-Silva, 2004. Relative growth rate and doubling time of the submerged aquatic macrophyte Egeria densa Planch. Acta Limnologica Brasiliensia 16: 77–84.Google Scholar
  47. Press, W. H., S. A. Teukolsky, W. T. Vetterling & B. P. Flannery, 1993. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, New York: 994 pp.Google Scholar
  48. Radford, P. J., 1967. Growth analysis formulae: their use and abuse. Crop Science 7: 171–175.CrossRefGoogle Scholar
  49. Rubim, M. A. L. & A. F. M. Camargo, 2001. Taxa de crescimento específico da macrófita aquática Salvinia molesta Mitchell em um braço do Rio Preto, Itanhaém, São Paulo. Acta Limnologica Brasiliensia 13(1): 75–83.Google Scholar
  50. Saia, F. T. & I. Bianchini Jr., 1998. Modelo do crescimento e senescência de Salvinia auriculata em condições de laboratório. In Seminário Regional De Ecologia, São Carlos. Anais. PPGERN/UFSCar, São Carlos, Brazil: 1331–1342.Google Scholar
  51. Sale, P. J. M., P. T. Orr, G. S. Shell & D. J. C. Erskine, 1985. Photosynthesis and growth rates in Salvinia molesta and Eichhornia crassipes. Journal of Applied Ecology 22: 125–137.CrossRefGoogle Scholar
  52. Shapiro, S. S. & M. B. Wilk, 1965. An analysis of variance test for normality (complete samples). Biometrika 52: 591–611.Google Scholar
  53. Silva, R. S., 2008. Influência da temperatura e de cargas de nutrientes no crescimento da macrófita aquática flutuante Eichhornia crassipes (Mart.) Solmons cultivada em água enriquecida artificialmente, Dissertation. UNESP, Jaboticabal: 32 pp.Google Scholar
  54. Sousa, W. T. Z., 2009. Efeito do regime hidroecológico sobre a comunidade de macrófitas aquáticas na planície de inundação do alto rio Paraná, Thesis. UEM, Brazil: 75pp.Google Scholar
  55. Sousa, W. T. Z., M. J. Silveira, R. P. Mormul, S. M. Thomaz & K. J. Murphy, 2009. Environmental predictors of the occurrence of exotic Hydrilla verticillata (L.f.) Royle and native Egeria najas Planch. in a sub-tropical river floodplain: the Upper River Paraná, Brazil. Hydrobiologia 632: 65–78.CrossRefGoogle Scholar
  56. Spencer, D. F. L., W. J. Anderson, M. D. Ames & F. J. Ryan, 1987. Variation in Hydrilla verticillata (L.f.) Royle propagule weight. Journal of Aquatic Plant Management 25: 11–14.Google Scholar
  57. Spencer, W. E., J. Teeri & R. G. Wetzel, 1994. Acclimation of photosynthetic phenotype to environmental heterogeneity. Ecology 75: 301–314.CrossRefGoogle Scholar
  58. Straškraba, M., 1999. Retention time as a key variable of reservoir limnology. In Tundisi, J. G. & M. Straškraba (eds), Theoretical Reservoir Ecology and its Applications. International Institute of Ecology, Brazilian Academy of Sciences and Backhuys Publishers, São Carlos: 385–410.Google Scholar
  59. Sutton, D. L., 1996. Depletion of turions and tubers of Hydrilla verticillata in the North New River Canal, Florida. Aquatic Botany 53: 121–130.CrossRefGoogle Scholar
  60. Sutton, D. L. & K. M. Portier, 1985. Density of tuber and turions of Hydrilla in South Florida. Journal of Aquatic Management 23: 64–67.Google Scholar
  61. Tanaka, R. H., L. R. Cardoso, D. Martins, D. A. S. Marcondes & A. L. Mustafá, 2002. Ocorrência de plantas aquáticas nos reservatórios da Companhia Energética de São Paulo. Planta Daninha 20: 99–111.Google Scholar
  62. Thomaz, S. M. & L. M. Bini, 1999. Ecologia e manejo de macrófitas aquáticas em reservatórios. Acta Limnologica Brasiliensia 10(1): 103–116.Google Scholar
  63. Thomaz, S. M., L. M. Bini, D. C. Souza, T. A. Pagioro, M. Carmo, S. Pierini, R. Ribeiro & S. A. Heil, 1999. Estudos de macrófitas aquáticas no reservatório de Itaipú: monitoramento e fatores ecológicos relacionados com as alterações da biomassa. UEM, Maringá: 83 pp.Google Scholar
  64. Thomaz, S. M., T. A. Pagioro, L. M. Bini & K. J. Murphy, 2006. Effect of reservoir drawdown on biomass of three species of aquatic macrophytes in a large sub-tropical reservoir (Itaipu, Brazil). Hydrobiologia 570: 53–59.CrossRefGoogle Scholar
  65. Valletta, L. S. A., 2007. Taxas fotossintéticas e crescimento de Cabomba piauhyensis da lagoa do Óleo (Estação Ecológica de Jataí, Município de Luiz Antônio, SP). UFSCar, São Carlos: 30 pp. (Monograph).Google Scholar
  66. Van, T. K. & K. K. Steward, 1990. Longevity of monoecious Hydrilla propagules. Journal of Aquatic Plant Management 28: 74–76.Google Scholar
  67. Van, T. K., W. T. Halle & G. Bowes, 1976. Comparison of the photosynthetic characteristics of three submersed aquatic plants. Plant Physiology 58: 761–768.CrossRefPubMedGoogle Scholar
  68. Van, T. K., G. S. Wheeler & T. D. Center, 1999. Competition between Hydrilla verticillata and Vallisneria americana as influenced by soil fertility. Aquatic Botany 62: 225–233.CrossRefGoogle Scholar
  69. Vermaat, J. E. & M. K. Hanif, 1998. Performance of common duckweed species (Lemnaceae) and the water fern Azolla filiculoides on different types of waste water. Water Research 32: 2569–2576.CrossRefGoogle Scholar
  70. Vogels, M., R. Zoeckler, D. Stasiw & L. C. P. F. Cerny, 1975. Verhulst’s “notice sur la loi que la populations suit dans son accroissement” from correspondence mathematique et physique. Ghent, vol. X, 1838. Journal of Biological Physics 3(4): 183–192.CrossRefGoogle Scholar
  71. Vollenweider, R. A., 1968. Scientific fundamentals of the eutrophication of lake and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Technical Report. Water Management Research OECD, Paris: 159 pp.Google Scholar
  72. Wang, J., D. Yu, W. Xiong & Y. Han, 2008. Above- and belowground competition between two submersed macrophytes. Hydrobiologia 607: 113–122.CrossRefGoogle Scholar
  73. Wetzel, R. G., 2001. Limnology—Lake and River Ecosystems. Academic Press/Elsevier, San Diego: 1006 pp.Google Scholar
  74. White, A., J. B. Reiskind & G. Bowes, 1996. Dissolved inorganic carbon influences the photosynthetic responses of Hydrilla to photoinhibitory conditions. Aquatic Botany 53: 3–13.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • I. BianchiniJr.
    • 1
    • 2
    Email author
  • M. B. Cunha-Santino
    • 1
  • J. A. M. Milan
    • 1
  • C. J. Rodrigues
    • 3
  • J. H. P. Dias
    • 3
  1. 1.Departamento HidrobiologiaUniversidade Federal de São Carlos (UFSCar)São CarlosBrazil
  2. 2.Programa Pós-Graduação Ecologia e Recursos NaturaisUniversidade Federal de São CarlosSão CarlosBrazil
  3. 3.Companhia Energética de São Paulo—CESPCastilhoBrazil

Personalised recommendations