, Volume 646, Issue 1, pp 281–293

The contribution of epipelon to total sediment microalgae in a shallow temperate eutrophic loch (Loch Leven, Scotland)

  • B. M. Spears
  • L. Carvalho
  • R. Perkins
  • M. B. O’Malley
  • D. M. Paterson


Benthic microalgae are known to perform important ecosystem functions in shallow lakes. As such it is important to understand the environmental variables responsible for regulating community structure, positioning and biomass. We tested the hypothesis that the positioning (across a depth gradient of 2–22 m overlying water depth) and relative biomass (determined using bulk and lens tissue harvested chlorophyll (Chl) a concentrations) of the epipelon community would vary independently with season (12 monthly samples) and across natural gradients of light and habitat disturbance relative to the total benthic algal community (i.e. all viable microalgae in the surface sediments) in a shallow eutrophic loch. Total sediment microalgal Chl a concentrations (TS-Chl; range: 5–874 μg Chl a g−1 dw) were highest in winter and in the deepest site (20 m overlying water depth), apparently as a result of phytoplanktonic settling and sediment focussing processes. Epipelic Chl a concentrations (Epi-Chl; range: <0.10–6.0 μg Chl a g−1 dw) were highest in winter/spring, a period when water clarity was highest and TS-Chl lowest. Principal components analysis highlighted strong associations between Epi-Chl and sites of intermediate depths (2.5–5.5 m) in all seasons except autumn/winter. Autumn/winter represented the season with the highest average wind speeds preceding sampling, during which the highest Epi-Chl concentrations were associated with the deepest sites. Epi-Chl was associated with intermediate light and habitat disturbance during spring/summer and summer/autumn and varied positively with habitat disturbance, only, in autumn/winter and winter/spring. The epipelon community structure also varied with depth; diatoms dominated shallow water sediments, cyanobacteria dominated deep water sediments, and sediments at sites of intermediate depth returned the highest biovolume estimates and the most diverse communities. This study has strengthened the hypothesis that the structure and biomass of benthic microalgal communities in lakes are regulated by habitat disturbance and water clarity, both of which are expected to respond to climate change and eutrophication. The degree to which these structural responses reflect functional performance requires clarification.


Benthic algae Epipelon Community structure Depth Sediment disturbance Lake Chlorophyll a 


  1. Aberle, N. & K. Wiltshire, 2006. Seasonality and diversity patterns of microphytobenthos in a mesotrophic lake. Archiv für Hydrobiologie 167: 447–465.CrossRefGoogle Scholar
  2. Admiraal, W., 1984. The ecology of estuarine sediment-inhabiting diatoms. In Round, F. E. & D. J. Chapman (eds), Progress in Phycological Research, Vol. 3. Biopress, Bristol, UK: 269–322.Google Scholar
  3. APHA, 1992. Standard Methods for the Examination of Water and Wastewater (edited by A. E. Greenberg, L. S. Clesceri & A. D. Eaton). American Public Health Association, Washington, DC.Google Scholar
  4. Armitage, P., P. S. Cranston & I. C. V. Pinder, 1995. The Chironomidae: The Biology and Ecology of Non-biting Midges. Chapman & Hall, London: 572 p.Google Scholar
  5. Bailey-Watts, A. E., 1974. The algal plankton of Loch Leven, Kinross. Proceedings of the Royal Society of Edinburgh B 74: 135–156.Google Scholar
  6. Bailey-Watts, A. E., A. Kirika, L. May & D. H. Jones, 1990. Changes in phytoplankton over various time scales in a shallow eutrophic lake: the Loch Leven experience with special reference to the influence of flushing rate. Freshwater Biology 23: 85–111.CrossRefGoogle Scholar
  7. Bartoli, M., D. Nizzoli & P. Viaroli, 2003. Microphytobenthos activity and fluxes at the sediment–water interface: interactions and spatial variability. Aquatic Ecology 37: 341–349.CrossRefGoogle Scholar
  8. Bonilla, S., V. Villeneuve & W. F. Vincent, 2005. Benthic and planktonic algal communities in a High Arctic Lake: pigment structure and contrasting responses to nutrient enrichment. Journal of Phycology 41: 1120–1130.CrossRefGoogle Scholar
  9. Borchradt, M. A., 1996. Nutrients. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, London, UK.Google Scholar
  10. Buchaca, T. & J. Catalan, 2007. Factors influencing the variability of pigments in the surface sediments of mountain lakes. Freshwater Biology 52: 1365–1379.CrossRefGoogle Scholar
  11. Burkholder, J. M., 1996. Interactions of benthic algae with their substrata. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, London, UK.Google Scholar
  12. Calvert, S. E., 1974. The distribution of bottom sediments in Loch Leven, Kinross. Proceedings of the Royal Society of Edinburgh B 74: 69–80.Google Scholar
  13. Cariou-Le Gall, V. & G. F. Blanchard, 1995. Monthly HPLC measurements of pigment concentration from an intertidal muddy sediment of Marennes-Oleraon Bay, France. Marine Ecology Progress Series 121: 171–179.CrossRefGoogle Scholar
  14. Carlton, R. G. & R. G. Wetzel, 1988. Phosphorus flux from lake sediments: effects of epipelic algal oxygen production. Limnology and Oceanography 33: 562–570.CrossRefGoogle Scholar
  15. Carvalho, L., B. Dudley & A. Kirika, 2007. Loch Leven 2004–2006: physical, chemical, and algal aspects of water quality. Report to Scottish Natural Heritage, Centre for Ecology and Hydrology, Edinburgh.Google Scholar
  16. Cattaneo, A., 1987. Periphyton in lakes of different trophy. Canadian Journal of Fisheries and Aquatic Sciences 44: 296–303.CrossRefGoogle Scholar
  17. Cyr, H., 1998. How does the vertical distribution of chlorophyll vary in littoral sediments of small lakes? Freshwater Biology 39: 25–40.CrossRefGoogle Scholar
  18. Dodds, W. K., 2003. The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. Journal of Phycology 39: 840–849.Google Scholar
  19. Eaton, J. W. & B. Moss, 1966. The estimation of numbers and pigment content in epipelic algal populations. Limnology and Oceanography 11: 379–382.CrossRefGoogle Scholar
  20. Falkowski, P. G. & J. LaRoche, 1991. Acclimation to spectral irradiance in algae. Journal of Phycology 27: 8–14.CrossRefGoogle Scholar
  21. Fee, E. J., R. E. Hecky, S. J. Guildford, C. Anema, D. Mathew & K. Hallard, 1988. Phytoplankton primary production and related limnological data for lakes and channels in the Mackenzie Delta and lakes of the Tuktoyaktuk peninsula, NWT. Canadian Technical Report of Fisheries and Aquatic Sciences: 1614.Google Scholar
  22. Gerbersdorf, S. U., T. Jancke, B. Westrich & D. M. Paterson, 2008. Microbial stabilization of riverine sediments by extracellular polymeric substances. Geobiology 6: 57–69.PubMedGoogle Scholar
  23. Håkanson, L., 1982. Bottom dynamics in lakes. Hydrobiologia 91: 9–22.Google Scholar
  24. Happey-Wood, C. M., 1988. Vertical-migration patterns of flagellates in a community of freshwater benthic algae. Hydrobiologia 161: 99–123.CrossRefGoogle Scholar
  25. Happey-Wood, C. M., G. M. A. Kennaway, M. H. Ong, A. M. Chittenden & G. Edwards, 1988. Contributions of nano- and pico-plankton to the productivity of phytoplankton and epipelic algae in an upland Welsh Lake. In Round, F. E. (ed.), Algae and the Aquatic Environment. Biopress, Bristol: 168–184.Google Scholar
  26. Head, R. M., R. I. Jones & A. E. Bailey-Watts, 1999. An assessment of the influence of recruitment from the sediment on the development of planktonic populations of cyanobacteria in a temperate mesotrophic lake. Freshwater Biology 41: 759–769.CrossRefGoogle Scholar
  27. Hickman, M. & F. E. Round, 1970. Primary production and standing crops of epipsammic and epipelic algae. British Phycological Journal 5: 247–255.CrossRefGoogle Scholar
  28. Hillebrand, H., C.-D. Dűrselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  29. Hilton, J., P. Lishman & V. Allen, 1986. The dominant processes of sediment distribution and focussing in a small, eutrophic, monomictic lake. Limnology and Oceanography 31: 125–133.CrossRefGoogle Scholar
  30. Hoagland, K. D. & C. G. Peterson, 1990. Effects of light and wave disturbance on vertical zonation of attached microalgae in a large reservoir. Journal of Phycology 26: 450–457.CrossRefGoogle Scholar
  31. Kromkamp, J., C. Barranguet & J. Peene, 1998. Determination of microphytobenthos PSII quantum efficiency and photosynthetic activity by means of variable chlorophyll fluorescence. Marine Ecology Progress Series 162: 45–55.CrossRefGoogle Scholar
  32. Lesen, A. E., 2006. Sediment organic matter composition and dynamics in San Fransisco Bay, California, USA: seasonal variation and interactions between water-column chlorophyll and the benthos. Estuarine, Coastal Shelf Science 66: 501–512.CrossRefGoogle Scholar
  33. Palmer, J. D. & F. E. Round, 1965. Persistent, vertical migration rhythms in benthic microflora. 1. The effect of light and temperature on the rhythmic behaviour of Euglena obtusa. Journal of the Marine Biological Association of the United Kingdom 45: 567–582.CrossRefGoogle Scholar
  34. Paterson, D. M., 1989. Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behaviour of epipelic diatoms. Limnology and Oceanography 34: 223–234.CrossRefGoogle Scholar
  35. Perkins, R. G., D. M. Paterson, H. Sun, J. Watson & M. A. Player, 2004. Extracellular polymeric substances: quantification and use in erosion experiments. Continental Shelf Research 24: 1623–1635.CrossRefGoogle Scholar
  36. Perkins, R. G., J.-L. Mouget, S. Lefebvre & J. Lavaud, 2006. Light response curve methodology and possible implications in the application of chlorophyll fluorescence to benthic diatoms. Marine Biology 149: 703–712.CrossRefGoogle Scholar
  37. Ploug, H., C. Lassen & B. B. Jørgensen, 1993. Action spectra of microalgal photosynthesis and depth distribution of spectral scalar irradiance in a coastal marine sediment of Limfjorden, Denmark. FEMS Microbiology, Ecology 12: 69–78.CrossRefGoogle Scholar
  38. Poulickova, A., P. Hasler, M. Lysakova & B. Spears, 2008. The ecology of freshwater epipelic algae: an update. Phycologia 47: 437–450.CrossRefGoogle Scholar
  39. Round, F. E., 1965. The Biology of the Algae. E. Arnold, London, UK. 269 pp.Google Scholar
  40. Round, F. E., 1966. Persistent, vertical-migration rhythms in benthic microflora. II. Field and laboratory studies on diatoms from the banks of the River Avon. Journal of the Marine Biological Association of the United Kingdom 46: 191–214.CrossRefGoogle Scholar
  41. Round, F. E., 1981. The Ecology of Algae. Cambridge University Press, Cambridge, UK.Google Scholar
  42. Round, F. E. & J. W. Eaton, 1966. Persistent, vertical-migration rhythms in benthic microflora. III. The rhythm of epipelic algae in a freshwater pond. Journal of Ecology 54: 609–615.CrossRefGoogle Scholar
  43. Smith, I. R., 1974. The structure and physical environment of Loch Leven, Scotland. Proceedings of the Royal Society of Edinburgh B 74: 81–100.Google Scholar
  44. Spears, B. M., L. Carvalho, R. Perkins, A. Kirika & D. M. Paterson, 2006. Spatial and historical variation in sediment phosphorus fractions and mobility in a large shallow lake. Water Research 40: 383–391.CrossRefPubMedGoogle Scholar
  45. Spears, B. M., L. Carvalho, R. Perkins, A. Kirika & D. M. Paterson, 2007a. Sediment phosphorus cycling in a large shallow lake: spatio-temporal variation in phosphorus pools and release. Hydrobiologia 584: 37–48.CrossRefGoogle Scholar
  46. Spears, B. M., J. Funnell, J. Saunders & D. M. Paterson, 2007b. On the boundaries: sediment stability measurement across aquatic ecosystems. In Westrich, B. & U. Forstner (eds), Sediment Dynamics and Pollutant Mobility in Rivers: An Interdisciplinary Approach. Springer, New York, USA: 68–79.Google Scholar
  47. Spears, B. M., L. Carvalho, R. Perkins & D. M. Paterson, 2008. Effects of light on sediment nutrient flux and water column nutrient stoichiometry in a shallow lake. Water Research 42: 977–986.CrossRefPubMedGoogle Scholar
  48. Spears, B. M. & I. D. Jones, 2010. The long-term (1979–2005) effects of the North Atlantic Oscillation on wind-induced wave mixing in Loch Leven (Scotland). Hydrobiologia. doi:10.1007/s10750-010-0188-9.
  49. Stevenson, R. J., 1996. An introduction to algal ecology in freshwater benthic habitats. In Stevenson, R. J., Bothwell, M. L. & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, London, UK.Google Scholar
  50. Vadeboncoeur, Y. & D. M. Lodge, 2000. Periphyton production on wood and sediment: susbstratum-specific response to laboratory and whole-lake nutrient manipulations. Journal of the North American Benthological Society 19: 68–81.CrossRefGoogle Scholar
  51. Vinebrooke, R. D. & P. R. Leavitt, 1999. Differential responses of littoral communities to ultraviolet radiation in an alpine lake. Ecology 80: 223–237.CrossRefGoogle Scholar
  52. Wasmund, N., 1984. Production and distribution of the microphytobenthos in the sediment of Lake Mikolajskie. International Revue der Gesamten Hydrobiologie 69: 215–229.CrossRefGoogle Scholar
  53. Wetzel, R. G. & G. E. Likens, 2000. Limnological Analysis. Springer, New York: 429.Google Scholar
  54. Woodruff, S. L., W. A. House, M. E. Callow & B. S. C. Leadbeater, 1999. The effects of biofilms on chemical processes in surficial sediments. Freshwater Biology 41: 73–89.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • B. M. Spears
    • 1
  • L. Carvalho
    • 1
  • R. Perkins
    • 2
  • M. B. O’Malley
    • 1
  • D. M. Paterson
    • 3
  1. 1.Centre for Ecology and Hydrology EdinburghPenicuikScotland, UK
  2. 2.School of Earth, Ocean and Planetary SciencesCardiff UniversityCardiffWales, UK
  3. 3.Sediment Ecology Research Group, Scottish Oceanographic InstituteUniversity of St. AndrewsSt. AndrewsScotland, UK

Personalised recommendations