Advertisement

Hydrobiologia

, Volume 646, Issue 1, pp 311–326 | Cite as

Bacterioplankton in the littoral and pelagic zones of subtropical shallow lakes

  • Haig-They Ng
  • David da Motta Marques
  • Erik Jeppesen
  • Martin Søndergaard
SHALLOW LAKES

Abstract

We measured bacterioplankton (phylotypes detected by fluorescent in situ hybridisation, morphometric forms, abundance and production) in samples collected in summer in the littoral and pelagic zones of 10 subtropical shallow lakes of contrasting area (from 13 to 80,800 ha). Compared to the pelagic zones, the littoral zones were overall characterised by higher macrophyte dominance and lower concentrations of total phosphorus and alkalinity and higher concentrations of dissolved organic carbon (DOC) and humic substances. Similarities of bacterial production and biomass turnover and density of active phylotypes and morphotype proportions were related to similarities in a set of environmental variables (including nutrients, humic substances content, predator density and phytoplankton biomass), and some additionally to lake area. Horizontal heterogeneity in bacterioplankton variables (littoral versus pelagic) increased with lake area. Bacterioplankton biomass and production tended to be lower in the littoral zone than in the pelagic zone despite higher concentrations of DOC and humic substances. A likely explanation is higher predation on bacterioplankton in the littoral zone, although allelophatic effects exerted by macrophytes cannot be excluded. Our results indicate that organic cycling via bacterioplankton may be less efficient in the littoral zone than in the pelagic zone of shallow lakes.

Keywords

Horizontal zonation Physiological status Bacterial morphotypes Bacterial predation Macrophytes Phytoplankton 

Notes

Acknowledgements

This work was supported by the Brazilian agency CNPq/MCT Taim Hydrological System, Site 7, part of the Brazilian network of Long Term Ecological Research-PELD (Grant 520017-98-1) and undertaken via the Programa de Pós-Graduação em Ecologia, UFRGS and Instituto de Pesquisas Hidráulicas, UFRGS. Special thanks go to Dr. Luciane Crossetti for phytoplankton analyses, Dr. Laura Utz for helping with ciliates handling, Dr. Luiz Kucharski for lending us the scintillator counter; Dr. Tiago Finkler Ferreira for macrophyte coverage data, valuable suggestions and comments and Anne Mette Poulsen for editorial assistance. EJ and MS were supported by the Villum Kann Rasmussen Foundation (CLEAR project), The Research Council for Nature and Universe (272-08-0406) and the EU projects EUROLIMPACS and WISER.

References

  1. American Public Health Association (APHA), 1999. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association Inc., Washington DC.Google Scholar
  2. Azam, F., J. G. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reyl & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.CrossRefGoogle Scholar
  3. Bell, T., D. Ager, J.-I. Song, J. A. Newmann, I. P. Thompson, A. K. Lilley & C. J. van der Gast, 2005. Larger islands house more bacterial taxa. Science 308: 884.CrossRefGoogle Scholar
  4. Bouvier, T. & P. A. del Giorgio, 2003. Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiology Ecology 44: 3–15.CrossRefPubMedGoogle Scholar
  5. Burks, R. L., E. Jeppesen & D. M. Lodge, 2001. Littoral zone structures as Daphnia refugia against fish predators. Limnology and Oceanography 46: 230–237.Google Scholar
  6. Cerbin, S., E. Van Donk & R. D. Gulati, 2007. The influence of Myriophyllum verticillatum and artificial plants on some life history parameters of Daphnia magna. Aquatic Ecology 41: 263–271.CrossRefGoogle Scholar
  7. Cotner, J. B. & B. A. Biddanda, 2002. Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5: 105–121.CrossRefGoogle Scholar
  8. Crisman, T. L. & J. R. Beaver, 1990. Applicability of planktonic biomanipulation for 6 managing eutrophication in the subtropics. Hydrobiologia 200: 177–185.CrossRefGoogle Scholar
  9. del Giorgio, P. A., J. J. Cole & A. Cimbleris, 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385: 148–151.CrossRefGoogle Scholar
  10. Fernandez, A. S., S. A. Hashsham, S. L. Dollhopf, L. Raskin, O. Glagoleva, F. B. Dazzo, F. Hickey, C. A. Criddle & J. M. Tiedje, 2000. Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Applied and Environmental Microbiology 66: 4058–4067.CrossRefPubMedGoogle Scholar
  11. Fischer, H. & M. Pusch, 2001. Comparison of bacterial production in sediments, epiphyton and the pelagic zone of a lowland river. Freshwater Biology 46: 1335–1348.CrossRefGoogle Scholar
  12. Glöckner, F. O., B. M. Fuchs & R. Amann, 1999. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Applied and Environmental Microbiology 65: 3721–3726.PubMedGoogle Scholar
  13. Google Earth, 2008. Accessed on: 06/2008.Google Scholar
  14. Gotelli, N. J., 2007. Ecologia, 3rd edn. Planta, Brazil: 8. Translation: A Primer of Ecology.Google Scholar
  15. Green, J. & B. J. M. Bohannan, 2006. Spatial scaling of microbial diversity. Trends in Ecology and Evolution 21: 501–507.CrossRefPubMedGoogle Scholar
  16. Gross, E., S. Hilt, P. Lombardo & G. Mulderij, 2007. Searching for allelopathic effects of submerged macrophytes on phytoplankton – state of the art and open questions. Hydrobiologia 584: 77–88.CrossRefGoogle Scholar
  17. Gyllström, M., L.-A. Hansson, E. Jeppesen, F. García-Criado, E. Gross, K. Irvine & T. Kairesalo, 2005. The role of climate in shaping zooplankton communities of shallow lakes. Limnology and Oceanography 50(6): 2008–2021.CrossRefGoogle Scholar
  18. Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: palaentological statistics software package for education and data analysis. Palaentologia Electronica 4: 1–9.Google Scholar
  19. Havens, K. E., A. C. Elia, M. I. Taticchi & R. S. Fulton, 2009. Zooplankton–phytoplankon relationships in shallow subtropical vs. temperate lakes Apopka (Florida, USA) and Trasimeno (Umbria, Italy). Hydrobiologia 628: 165–175.CrossRefGoogle Scholar
  20. Hillebrand, H., D. Dürseken, D. Kirschiel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  21. Hilt, S. & E. Gross, 2008. Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic and Applied Ecology 9: 422–432.CrossRefGoogle Scholar
  22. Hilt, S., M. G. N. Ghobrial & E. M. Gross, 2006. In situ allelopathic potential of Myriophyllum verticillatum (Haloragaceae) against selected phytoplankton species. Journal of Phycology 42: 1189–1198.CrossRefGoogle Scholar
  23. Holz, M., 1999. Do mar ao deserto. A Evolução do Rio Grande do Sul no Tempo Geológico, 2nd edn. UFRGS, Porto Alegre: 131–144, 144 pp (Portuguese).Google Scholar
  24. Horner-Devine, M. C., M. Lage, J. B. Hughes & B. J. M. Bohannan, 2004. A taxa–area relationship for bacteria. Nature 432: 750–753.CrossRefPubMedGoogle Scholar
  25. Huss, A. A. & J. D. Wehr, 2004. Strong indirect effects of a submersed aquatic macrophyte, Vallisneria americana, on bacterioplankton densities in a mesotrophic lake. Microbial Ecology 45: 305–315.Google Scholar
  26. IBGE, 2005. Brazilian Institute of Geography and Statistics (Fundação Instituto Brasileiro de Geografia e Estatística, 2008). Brazilian cartographic digital base (1:1000000) version 2003 (Portuguese): 26, Fig. 1: IBGE.Google Scholar
  27. Jeppesen, E., M. Søndergaard, M. Søndergaard, K. Christoffersen, K. Jürgens, J. Theil-Nielsen & L. Schlüter, 2002. Cascading trophic interactions in the littoral zone: an enclosure experiment in shallow Lake Stigsholm, Denmark. Archiv für Hydrobiologie 153: 533–555.Google Scholar
  28. Jeppesen, E., M. Meerhoff, B. A. Jakobsen, R. S. Hansen, M. Søndergaard, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & C. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulation – the successful strategy depends on lake size and climate. Hydrobiologia 581: 269–288.CrossRefGoogle Scholar
  29. Jespersen, A.-M. & K. Christoffersen, 1987. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie 109: 445–454.Google Scholar
  30. Jürgens, K. & E. Jeppesen, 1997. Cascading effects on microbial food web structure in a dense macrophyte canopy. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, Vol. 131. Springer Verlag, New York: 262–274.Google Scholar
  31. Kepner, R. L. J. R. & J. R. Pratt, 1994. Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiological Reviews 58: 603–615.PubMedGoogle Scholar
  32. Kirchman, D., 2001. Measuring bacterial biomass production and growth rates from leucine incorporation in natural aquatic environments. In Paul, J. H. (ed.), Methods in Microbiology, Vol. 30. Academic Press, USA: 227–237.Google Scholar
  33. Körner, S. & A. Nicklisch, 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. Journal of Phycology 38: 862–871.CrossRefGoogle Scholar
  34. Leu, A., A. Krieger-Liszkay, C. Goussias & E. M. Gross, 2002. Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiology 130: 2011–2018.CrossRefPubMedGoogle Scholar
  35. Lindström, E. S. & E. Leskinen, 2002. Do neighboring lakes share common taxa of bacterioplankton? Comparison of the 16S rDNA fingerprints and sequences from three geographic regions. Microbial Ecology 44: 1–9.CrossRefPubMedGoogle Scholar
  36. Liu, J., F. B. Dazzo, O. Glagoleva, B. Yu & A. K. Jain, 2001. CMEIAS: a computer-aided system for the image analysis of bacterial morphotypes in microbial communities. Microbial Ecology 41: 173–194.PubMedGoogle Scholar
  37. Mackereth, F. J. H., J. Heron & J. F. Talling, 1989. Water Analysis: Some Revised Methods for Limnologists, 2nd ed. Freshwater Biological Association, USA.Google Scholar
  38. Madsen, J., 1999. Point Intercept and Line Intercept Methods for Aquatic Plant Management. Aquatic Plant Control Technical Note. APCRP: 11 pp.Google Scholar
  39. Massana, R., J. M. Gasol, P. K. Bjørnsen, N. Black-Burn, Å. Hagström, S. Hietanen, B. H. Hygum, J. Kuparinen & C. Pedrós-Alió, 1997. Measurement of bacterial size via image analysis of epifluorescence preparations: description of an inexpensive system and solutions to some of the most common problems. Scientia Marina 61: 397–407.Google Scholar
  40. Meerhoff, M., F. T. M. Clemente, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007a. Can warm climate-related structure of littoral predator assemblages weaken the clear water state in shallow lakes? Global Change Biology 13: 189–1888.CrossRefGoogle Scholar
  41. Meerhoff, M., C. Iglesias, F. T. de Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen, E. Jeppesen, et al., 2007b. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical lakes. Freshwater Biology 52(6): 1009–1021.CrossRefGoogle Scholar
  42. Norland, S., 1993. The relationship between biomass and volume of bacteria. In Kemp, P. F., B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, USA: 339–345, 777 pp.Google Scholar
  43. Pernthaler, J., G. Frank-Oliver, W. Schönhuber & R. Amann, 2001. Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. In Paul, J. H. (ed.), Methods in Microbiology, Vol. 30. Academic Press, USA: 207–226.Google Scholar
  44. Pinel-Alloul, B. & A. Ghadouani, 2007. Spatial heterogeneity of planktonic microorganisms in aquatic systems. In Franklin, R. B. & A. L. Mills (eds), The Spatial Distribution of Microbes in the Environment. Springer, New York: 203–310.CrossRefGoogle Scholar
  45. Pommier, T., B. Canbäck, L. Riemann, K. H. Boström, K. Simu, P. Lundberg, A. Tunlid & Å. Hagström, 2007. Global patterns of diversity and community structure in marine bacterioplankton. Molecular Ecology 16: 867–880.CrossRefPubMedGoogle Scholar
  46. Racy, F. P. P., 2004. Aspectos numéricos, morfológicos de morfométricos da comunidade bacteriana em diferentes escalas trófica e temporal, em reservatórios. Master Thesis (Universidade Federal de São Carlos): 65 pp (Portuguese).Google Scholar
  47. Reche, I., E. Pulido-Villena, R. Morales-Baquero & E. O. Casamayor, 2005. Does ecosystem size determine aquatic bacterial richness? Ecology 86: 1715–1722.CrossRefGoogle Scholar
  48. Rooney, N. & J. Kalff, 2003. Submerged macrophyte-bed effects on water-column phosphorus, chlorophyll a, and bacterial production. Ecosystems 6: 797–807.CrossRefGoogle Scholar
  49. Schäfer, A., 1988. Tipificação ecológica das lagoas costeiras do Rio Grande do Sul, Brasil. Acta Limnolica Brasiliensia 11: 29–55. (Portuguese).Google Scholar
  50. Scheffer, M. & E. Jeppesen, 1997. Alternative stable states. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, Vol. 131. Springer Verlag, New York: 397–406.Google Scholar
  51. Schriver, P., J. Bøgestrand, E. Jeppesen & M. Søndergaard, 1995. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology 33: 255–270.CrossRefGoogle Scholar
  52. Schwarzbold, A. & A. Schäfer, 1984. Gênese e morfologia das lagoas costeiras do Rio Grande do Sul – Brasil. Amazoniana 9: 87–104. (Portuguese).Google Scholar
  53. Shade, A., A. E. Jones & K. D. McMahon, 2008. The influence of habitat heterogeneity on freshwater bacterial community composition and dynamics. Environmental Microbiology 10: 1057–1067.CrossRefPubMedGoogle Scholar
  54. Simon, D. C. & F. Azam, 1992. A simple, economical method for measuring bacterial protein synthesis rates in sea water using 3H-leucine. Marine Microbial Food Webs 6: 107–109.Google Scholar
  55. Søndergaard, M. & B. Moss, 1997. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, Vol. 131. Springer Verlag, New York: 115–132.Google Scholar
  56. Søndergaard, M. & R. G. Wetzel, 1997. The role of submersed macrophytes for the microbial community and dynamics of dissolved organic carbon in aquatic ecosystems. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, Vol. 131. Springer Verlag, New York: 133–148.Google Scholar
  57. Søndergaard, M., J. Theil-Nielsen, K. Christoffersen, L. Schlüter, E. Jeppesen & M. Søndergaard, 1997. Bacterioplankton and carbon turnover in a dense macrophyte canopy. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, Vol. 131. Springer Verlag, New York: 250–262.Google Scholar
  58. Søndergaard, M., E. Jeppesen & J. P. Jensen, 2005. Pond or lake: does it make any difference? Archiv für Hydrobiologie 162: 143–165.CrossRefGoogle Scholar
  59. Stanley, E. H., M. D. Johnson & A. K. Ward, 2003. Evaluating the influence of macrophytes on algal and bacterial production in multiple habitats of a freshwater wetland. Limnology and Oceanography 48: 1101–1111.CrossRefGoogle Scholar
  60. Sun, J. & D. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.CrossRefGoogle Scholar
  61. Vadeboncoeur, Y., M. J. V. Zanden & D. M. Lodge, 2002. Putting the lake back together: reintegrating benthic pathways into lake food web models. Bioscience 52: 44–54.CrossRefGoogle Scholar
  62. van der Gucht, K., K. Cottenie, K. Muylaert, N. Vloemans, S. Cousin, S. Declerck, E. Jeppesen, J.-M. Conde-Porcuna, K. Schwenk, G. Zwart, H. Degans, W. Vyverman & L. D. Meester, 2007. The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proceedings of the National Academy of Sciences 104: 20404–20409.CrossRefGoogle Scholar
  63. Van Donk, E. & W. J. Van de Bund, 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany 72: 261–274.CrossRefGoogle Scholar
  64. Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses, 3rd ed. Springer-Verlag, New York: 429 pp.Google Scholar
  65. Wolda, H., 1981. Similarity indices, sample size and diversity. Oecologia 50: 296–302.CrossRefGoogle Scholar
  66. Wu, Q. L., G. Zwart, J. Wu, P. Kamst-van Agterveld, S. Liu & M. W. Hahn, 2007. Submersed macrophytes play a key role in structuring bacterioplankton community composition in the large, shallow, subtropical Taihu Lake, China. Environmental Microbiology 9: 2765–2774.CrossRefPubMedGoogle Scholar
  67. Yannarell, A. C. & E. W. Triplett, 2004. Within- and between-lake variability in the composition of bacterioplankton communities: investigations using multiple spatial scales. Applied and Environmental Microbiology 70: 214–223.CrossRefPubMedGoogle Scholar
  68. Zdanowski, M. K., M. J. Zmuda & I. Zwolska, 2005. Bacterial role in the decomposition of marine-derived material (penguim guano) in the terrestrial maritime Antarctic. Soil Biology & Biochemistry 37: 581–595.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Haig-They Ng
    • 1
  • David da Motta Marques
    • 2
  • Erik Jeppesen
    • 3
  • Martin Søndergaard
    • 3
  1. 1.Programa de Pós-Graduação em EcologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Instituto de Pesquisas HidráulicasIPH-Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Department of Freshwater Ecology, National Environmental Research InstituteAarhus UniversitySilkeborgDenmark

Personalised recommendations