Advertisement

Hydrobiologia

, Volume 646, Issue 1, pp 91–100 | Cite as

Regime shifts in shallow lakes: the importance of seasonal fish migration

  • Christer BrönmarkEmail author
  • Jakob Brodersen
  • Ben B. Chapman
  • Alice Nicolle
  • P. Anders Nilsson
  • Christian Skov
  • Lars-Anders Hansson
SHALLOW LAKES

Abstract

Shallow eutrophic lakes commonly exist in two alternative stable states: a clear-water state and a turbid water state. A number of mechanisms, including both abiotic and biotic processes, buffer the respective states against changes, whereas other mechanisms likely drive transitions between states. Our earlier research shows that a large proportion of zooplanktivorous fish populations in shallow lakes undertake seasonal migrations where they leave the lake during winter and migrate back to the lake in spring. Based on our past research, we propose a number of scenarios of how feedback processes between the individual and ecosystem levels may affect stability of alternative stable states in shallow lakes when mediated by fish migration. Migration effects on shallow lakes result from processes at different scales, from the individual to the ecosystem. Our earlier research has shown that ecosystem properties, including piscivore abundance and zooplankton productivity, affect the individual state of zooplanktivorous fish, such as growth rate or condition. Individual state, in turn, affects the relative proportion and timing of migrating zooplanktivorous fish. This change, in turn, may stabilize states or cause runaway processes that eventually lead to state shifts. Consequently, such knowledge of processes coupled to seasonal migration of planktivorous fish should increase our understanding of shallow lake dynamics.

Keywords

Alternative stable states Buffering mechanisms Transition Migration Roach 

Notes

Acknowledgements

We acknowledge funding from the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) and The Swedish Research Council (VR).

References

  1. Baker, R. R., 1978. The Evolutionary Ecology of Animal Migration. Hodder and Stoughton, London.Google Scholar
  2. Borcherding, J., M. Bauerfeld, D. Hintzen & D. Neumann, 2002. Lateral migrations of fishes between floodplain lakes and their drainage channels at the Lower Rhine: diel and seasonal aspects. Journal of Fish Biology 61: 1154–1170.CrossRefGoogle Scholar
  3. Brodersen, J., P. A. Nilsson, C. Skov, L.-A. Hansson & C. Brönmark, 2008a. Condition-dependent individual decision-making determines cyprinid partial migration. Ecology 89: 1195–1200.CrossRefPubMedGoogle Scholar
  4. Brodersen, J., E. Ådahl, C. Brönmark & L.-A. Hansson, 2008b. Ecosystem effects of partial fish migration in lakes. Oikos 117: 40–44.CrossRefGoogle Scholar
  5. Brönmark, C. & S. W. Weisner, 1992. Indirect effects of fish community structure on submerged vegetation in eutrophic lakes: an alternative mechanism. Hydrobiologia 243(244): 293–301.CrossRefGoogle Scholar
  6. Brönmark, C., C. Skov, J. Brodersen, P. A. Nilsson & L.-A. Hansson, 2008. Seasonal migration determined by a trade-off between predator avoidance and growth. PloS One 3(4): e1957.CrossRefPubMedGoogle Scholar
  7. Carpenter, S. R., 2003. Regime Shifts in Lake Ecosystems: Pattern and Variation. International Ecology Institute, Oldenburg/Luhe, Germany.Google Scholar
  8. Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer, X. He & C. N. von Ende, 1987. Regulations of lake primary production by food web structure. Ecology 68: 1863–1876.CrossRefGoogle Scholar
  9. Cerri, R. D. & D. F. Fraser, 1983. Predation and risk in foraging minnows: balancing conflicting demands. American Naturalist 121: 552–561.CrossRefGoogle Scholar
  10. Crowder, L. B. & W. E. Cooper, 1982. Habitat structural complexity and the interactions between bluegills and their prey. Ecology 63: 1802–1813.CrossRefGoogle Scholar
  11. Diana, J. S., 1996. Energetics. In Craig, J. F. (ed.), Pike. Biology and Exploitation. Chapman and Hall, London: 103–124.Google Scholar
  12. Dingle, H. & A. V. Drake, 2007. What is migration? Bioscience 57: 113–121.CrossRefGoogle Scholar
  13. Dodson, J. J., 1997. Fish migration: an evolutionary perspective. In Godin, J.-G. J. (ed.), Behavioural Ecology of Teleost Fishes. Oxford University Press, Oxford.Google Scholar
  14. Fryxell, J. M. & A. R. E. Sinclair, 1988. Causes and consequences of migration by large herbivores. Trends in Ecology and Evolution 3: 237–241.CrossRefGoogle Scholar
  15. Hanson, M. A. & M. G. Butler, 1994. Responses of plankton, turbidity, and macrophytes to biomanipulation in a shallow prairie lake. Canadian Journal of Fisheries and Aquatic Sciences 51: 1180–1188.CrossRefGoogle Scholar
  16. Hansson, L.-A., H. Annadotter, E. Bergman, S. F. Hamrin, E. Jeppesen, T. Kairesalo, E. Luokkanen, P.-Å. Nilsson, M. Søndergaard & J. A. Strand, 1998. Biomanipulation as an application of food chain theory: constraints, synthesis and recommendations for temperate lakes. Ecosystems 1: 558–574.CrossRefGoogle Scholar
  17. Hansson, L.-A., A. Nicolle, J. Brodersen, P. Romare, C. Skov & C. Brönmark, 2007. Consequences of fish predation, migration and juvenile ontogeny on zooplankton spring dynamics. Limnology and Oceanography 207: 696–706.Google Scholar
  18. Hargeby, A., I. Blindow & L.-A. Hansson, 2004. Shifts between clear and turbid states in a shallow lake: multi-causal stress from climate, nutrients and biotic interactions. Archiv für Hydrobiologie 161: 433–454.CrossRefGoogle Scholar
  19. Hargeby, A., I. Blindow & G. Andersson, 2007. Long-term patterns of shifts between clear and turbid states in Lake Krankesjön and Lake Tåkern. Ecosystems 10: 29–36.CrossRefGoogle Scholar
  20. He, X. & J. F. Kitchell, 1990. Direct and indirect effects of predation on a fish community: a whole lake experiment. Transactions of the American Fisheries Society 119: 825–835.CrossRefGoogle Scholar
  21. Horppila, J., A. Liljendahl-Nurminen & T. Malinen, 2004. Effects of clay turbidity and light on the predator-prey interaction between smelts and chaoborids. Canadian Journal of Fisheries and Aquatic Sciences 61: 1862–1870.CrossRefGoogle Scholar
  22. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342(343): 151–164.CrossRefGoogle Scholar
  23. Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), 1998. Structuring Role of Submerged Macropytes in Lakes. Springer, New York.Google Scholar
  24. Jeppesen, E., J. P. Jensen & M. Søndergaard, 2002. Response of phytoplankton, zooplankton, and fish to re-oligotrophication: an 11 year study of 23 Danish lakes. Aquatic Ecosystem Health and Management 5: 31–43.CrossRefGoogle Scholar
  25. Jeppesen, E., J. P. Jensen, M. Søndergaard, M. Fenger-Grøn, M. E. Bramm, K. Sandby, P. H. Møller & H. Utoft Rasmussen, 2004. Impact of fish predation on cladoceran body weight distribution and zooplankton grazing in lakes during winter. Freshwater Biology 49: 432–447.CrossRefGoogle Scholar
  26. Jepsen, N. & S. Berg, 2002. The use of winter refuges by roach tagged with miniature radio transmitters. Hydrobiologia 483: 167–173.CrossRefGoogle Scholar
  27. Jobling, M., 1994. Fish Bioenergetics. Chapman and Hall, London.Google Scholar
  28. Jones, J. I. & C. D. Sayer, 2003. Does the fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes? Ecology 84: 2155–2167.CrossRefGoogle Scholar
  29. Jonsson, B. & N. Jonsson, 1993. Partial migration: niche shift versus sexual maturation in fishes. Reviews in Fish Biology and Fisheries 3: 348–365.CrossRefGoogle Scholar
  30. Jordan, D. R. & J. S. Wortley, 1985. Sampling strategy related to fish distribution, with particular reference to the Norfolk Broads. Journal of Fish Biology 27(Suppl A): 163–173.CrossRefGoogle Scholar
  31. Kautsky, L., 1987. Life-cycles of three populations of Potamogeton pectinatus L. at different degrees of wave exposure in the Askö area, Northern Baltic Proper. Aquatic Botany 27: 177–186.CrossRefGoogle Scholar
  32. Lampert, W., W. Fleckner, H. Rai & B. Taylor, 1986. Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnology and Oceanography 31: 478–490.CrossRefGoogle Scholar
  33. Lougheed, V. L., T. Theysmeyer, T. Smith & P. Chow-Fraser, 2004. Carp exclusion, food-web interactions, and the restoration of Cootes Paradise Marsh. Journal of Great Lakes Research 30: 44–57.CrossRefGoogle Scholar
  34. Lucas, M. C. & E. Baras, 2001. Migration of Freshwater Fishes. Blackwell Science, Oxford.CrossRefGoogle Scholar
  35. Lundberg, P., 1988. The evolution of partial migration in birds. Trends in Ecology and Evolution 3: 172–175.CrossRefGoogle Scholar
  36. Miner, J. G. & R. A. Stein, 1996. Detection of predators and habitat choice by small bluegills: effects of turbidity and alternative prey. Transactions of the American Fisheries Society 125: 97–103.CrossRefGoogle Scholar
  37. Nilsson, P. A., 2006. Avoid your neighbours: size-determined spatial distribution patterns among northern pike individuals. Oikos 113: 251–258.CrossRefGoogle Scholar
  38. Nilsson, P. A. & C. Brönmark, 2000. Prey vulnerability to a gape-size limited predator: behavioural and morphological impacts on northern pike piscivory. Oikos. 88: 539–546.CrossRefGoogle Scholar
  39. Northcote, T. G., 1978. Migratory strategies and production in freshwater fishes. In Gerking, S. D. (ed.), Ecology of Freshwater Fish Production. Blackwell, Oxford: 326–359.Google Scholar
  40. Pettersson, L. & C. Brönmark, 1993. Trading off safety against food: state dependent habitat choice and foraging in crucian carp. Oecologia 95: 353–357.CrossRefGoogle Scholar
  41. Romare, P. & L.-A. Hansson, 2003. A behavioral cascade: top-predator induced behavioral shifts in planktivorous fish and zooplankton. Limnology and Oceanography 48: 1956–1964.CrossRefGoogle Scholar
  42. Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman and Hall, London.Google Scholar
  43. Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.CrossRefGoogle Scholar
  44. Scheffer, M., S. R. Carpenter, J. A. Foley, C. Folke & B. Walker, 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.CrossRefPubMedGoogle Scholar
  45. Skov, C., J. Brodersen, C. Brönmark, L.-A. Hansson, P. Hertonsson & P. A. Nilsson, 2005. Evaluation of PIT-tagging in cyprinids. Journal of Fish Biology 67: 1–7.CrossRefGoogle Scholar
  46. Skov, C., J. Brodersen, P. A. Nilsson, L.-A. Hansson & C. Brönmark, 2008. Inter- and size-specific patterns of fish seasonal migration between a shallow lake and its connected streams. Ecology of Freshwater Fish 17: 406–415.CrossRefGoogle Scholar
  47. Troeng, S., P. H. Dutton & D. Evans, 2005. Migration of hawksbill turtles Eretmochelys imbricata from Tortuguero, Costa Rica. Ecography 28: 394–402.CrossRefGoogle Scholar
  48. Turesson, H. & C. Brönmark, 2007. Predator-prey encounter rates in freshwater piscivores: effects of prey density and water transparency. Oecologia 153: 281–290.CrossRefPubMedGoogle Scholar
  49. Van Donk, E. & A. Otte, 1996. Effects of grazing by fish and waterfowl on the biomass and species composition of submerged macrophytes. Hydrobiologia 340: 285–290.CrossRefGoogle Scholar
  50. Werner, E. E. & J. F. Gilliam, 1984. The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics 1: 393–425.CrossRefGoogle Scholar
  51. Winder, M. & D. E. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Christer Brönmark
    • 1
    Email author
  • Jakob Brodersen
    • 1
  • Ben B. Chapman
    • 1
  • Alice Nicolle
    • 1
  • P. Anders Nilsson
    • 1
  • Christian Skov
    • 2
  • Lars-Anders Hansson
    • 1
  1. 1.Department of Ecology, Limnology, Ecology BuildingLund UniversityLundSweden
  2. 2.DTU Aqua, National Institute of Aquatic Resources, Section for Inland FisheriesSilkeborgDenmark

Personalised recommendations