Advertisement

Hydrobiologia

, Volume 642, Issue 1, pp 13–34 | Cite as

Holocene climate and environmental history of Brurskardstjørni, a lake in the catchment of Øvre Heimdalsvatn, south-central Norway

  • Gaute VelleEmail author
  • Anne E. Bjune
  • Jorunn Larsen
  • H. John B. Birks
SUBALPINE LAKES

Abstract

The Holocene lake history, vegetation history and climate history of Brurskardstjørni, an alpine lake in the Jotunheimen Mountains of south-central Norway, are reconstructed. The reconstructions are based on fossil pollen, plant macrofossils, diatoms, chironomids and sediment characteristics. Subsequent to deglaciation, the lake was formed at about 11,000 cal years BP. A diverse chironomid assemblage quickly colonised the lake, whereas the first diatoms were found about 400 years later. At that time, the lake water was turbid with a high pH. The surrounding soils were immature and unstable and dominated by open pioneer vegetation. Compared to the present, summer temperatures were warmer and there was less winter precipitation. From about 10,000 cal years BP, local organic production increased rapidly and from about 9,500 cal years BP a few macrofossils and a high pollen influx of birch suggest that the tree-line was close to the lake. Pine most likely reached its highest tree-line altitude around 9,000 cal years BP and has receded since that time. From about 5,000 cal years BP, the total amount of trees and shrubs decreased and the landscape became more open, probably due to decreasing temperatures and increasing effective moisture lowering the birch tree-line. Coinciding with a cooling during the last 3,000 years, lake-water pH decreased. There is large incongruence between the Holocene July temperatures inferred from pollen and chironomids. The biological proxies responded to a combined effect of environmental change and biotic interactions. This response is interpreted with reference to taxon–environment relationships in the modern calibration data sets and with reference to the latent structure and ecological demands of the fossil assemblages.

Keywords

Pollen Chironomids Diatoms Holocene Palaeoecology Inference validation 

Notes

Acknowledgements

We wish to thank Øyvind Lie, Svein Olaf Dahl, Helle B. Urheim and Kristine Fjordheim for help in retrieval of the sediment core and Øyvind Lie for performing the LOI analyses. Parts of the chironomid sorting were done by Karoline Klausen. Einar Heegaard carried out the programming for the depth–age model. Arvid Odland compiled the modern climate data for the lake and for the modern calibration data set. We wish to thank Heikki Seppä and two additional referees for helpful comments. This work has been supported by the Norwegian Research Council (NFR) through grants to Gaute Velle (projects 133462/720 and 178653/S30) and to Anne E. Bjune and Jorunn Larsen through the programme ‘Norwegian Palaeoenvironments and Climate’ (NORPEC: project 133943/420). This is publication no. A 231 from the Bjerknes Centre for Climate Research.

References

  1. Aas, B. & T. Faarlund, 1988. Postglasiale skoggrenser i sentrale sørnorske fjelltrakter. 14C-datering av subfossile furu- og bjørkerester. (Postglacial forest limits in central south Norwegian mountains. Radiocarbon datings of subfossil pine and birch specimens). Norsk geografisk Tidsskrift 42: 2–61.Google Scholar
  2. Armitage, P. D., P. S. Cranston & L. C. V. Pinder, 1995. The Chironomidae: Biology and Ecology of Non-biting Midges. Chapman & Hall, London: 572 pp.Google Scholar
  3. Barnekow, L., 2000. Holocene regional and local vegetation history and lake-level changes in the Tornetrask area, northern Sweden. Journal of Paleolimnology 23: 399–420.Google Scholar
  4. Barnekow, L., G. Possnert & P. Sandgren, 1998. AMS C-14 chronologies of Holocene lake sediments in the Abisko area, northern Sweden – a comparison between dated bulk sediment and macrofossil samples. Geologiska Föreningens i Stockholm Förhandlingar (GFF) 120: 59–67.Google Scholar
  5. Barnett, C., L. Dumayne-Peaty & J. A. Matthews, 2001. Holocene climatic change and tree-line response in Leirdalen, central Jotunheimen, south central Norway. Review of Palaeobotany and Palynology 117: 119–137.Google Scholar
  6. Battarbee, R. W., 1986. Diatom analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester: 527–570.Google Scholar
  7. Battarbee, R. W. & M. J. Kneen, 1982. The use of electronically counted microspheres in absolute diatom analysis. Limnology and Oceanography 27: 184–188.CrossRefGoogle Scholar
  8. Bennett, K. D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132: 155–170.Google Scholar
  9. Berger, A. L. & M. F. Loutre, 1991. Insolation values for the climate of the last 10000000 years. Quaternary Science Reviews 10: 297–317.Google Scholar
  10. Bigler, C., I. Larocque, S. M. Peglar, H. J. B. Birks & R. I. Hall, 2002. Quantitative multiproxy assessment of long-term patterns of Holocene environmental change from a small lake near Abisko, northern Sweden. Holocene 12: 481–496.Google Scholar
  11. Birks, H. J. B., 1981. The use of pollen analysis in the reconstruction of past climates. In Wigley, T. M. L., M. J. Ingram & G. Farmer (eds), Climate and History: Studies in Past Climates and Their Impact on Man. Cambridge University Press, Cambridge: 111–138.Google Scholar
  12. Birks, H. J. B., 1998. Numerical tools in palaeolimnology – progress, potentials, and problems. Journal of Paleolimnology 20: 307–332.Google Scholar
  13. Birks, H. H., 2001. Plant macrofossils. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change using Lake Sediments. Kluwer Academic Publishers, Dordrecht: 49–74.Google Scholar
  14. Birks, H. J. B. & H. H. Birks, 1980. Quaternary Paleoecology. Edward Arnold, London: 289 pp.Google Scholar
  15. Birks, H. H. & H. J. B. Birks, 2000. Future uses of pollen analysis must include plant macrofossils. Journal of Biogeography 27: 31–35.Google Scholar
  16. Birks, H. H. & H. J. B. Birks, 2003. Reconstructing Holocene climates from pollen and plant macrofossils. In Mackay, A., R. W. Battarbee, H. J. B. Birks & F. Oldfield (eds), Global Change in the Holocene. Arnold, London: 342–357.Google Scholar
  17. Birks, H. H. & H. J. B. Birks, 2006. Multi-proxy studies in palaeolimnology. Vegetation History and Archaeobotany 15: 235–251.Google Scholar
  18. Birks, H. J. B. & A. D. Gordon, 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press, London: 317 pp.Google Scholar
  19. Birks, H. J. B., S. Juggins & J. M. Line, 1990. Lake water chemistry reconstruction. In Mason, B. J. (ed.), The Surface Waters Acidification Programme. Cambridge University Press, Cambridge: 301–313.Google Scholar
  20. Birks, H. H., R. W. Battarbee & H. J. B. Birks, 2000. The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late glacial and early Holocene – a synthesis. Journal of Paleolimnology 23: 91–114.Google Scholar
  21. Bjune, A. E., 2005. Holocene vegetation history and tree-line changes on a north-south transect crossing major climate gradients in southern Norway – evidence from pollen and plant macrofossils in lake sediments. Review of Palaeobotany and Palynology 133: 249–275.Google Scholar
  22. Bjune, A. E., J. Bakke, A. Nesje & H. J. B. Birks, 2005. Holocene mean July temperature and winter precipitation in western Norway inferred from palynological and glaciological lake-sediment proxies. Holocene 15: 177–189.Google Scholar
  23. Bjune, A. E., H. Seppä & H. J. B. Birks, 2009. Quantitative summer-temperature reconstructions for the last 2000 years based on pollen-stratigraphical data from northern Fennoscandia. Journal of Paleolimnology 41: 43–56.Google Scholar
  24. Brodersen, K. P. & N. J. Anderson, 2002. Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshwater Biology 47: 1137–1157.Google Scholar
  25. Brodersen, K. P. & C. Lindegaard, 1999. Mass occurrence and sporadic distribution of Corynocera ambigua Zetterstedt (Diptera, Chironomidae) in Danish lakes. Neo- and palaeolimnological records. Journal of Paleolimnology 22: 41–52.Google Scholar
  26. Brodersen, K. P., O. Pedersen, C. Lindegaard & K. Hamburger, 2004. Chironomids (Diptera) and oxy-regulatory capacity: an experimental approach to paleolimnological interpretation. Limnology and Oceanography 49: 1549–1559.Google Scholar
  27. Brooks, S. J., 2006. Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region. Quaternary Science Reviews 25: 1894–1910.Google Scholar
  28. Brooks, S. J. & H. J. B. Birks, 2000. Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Kråkenes Lake, western Norway. Journal of Paleolimnology 23: 77–89.Google Scholar
  29. Brooks, S. J. & H. J. B. Birks, 2001. Chironomid-inferred air temperatures from Late-glacial and Holocene sites in north-west Europe: progress and problems. Quaternary Science Reviews 20: 1723–1741.Google Scholar
  30. Brooks, S. J., P. G. Langdon & O. Heiri, 2007. The identification and use of Palaearctic Chironomidae larvae in palaeoecology. Quaternary Research Association Technical Guide 10: 276 pp.Google Scholar
  31. Camburn, K. E. & D. F. Charles, 2000. Diatoms of the Low-Alkalinity Lakes in the Northeastern United States. The Academy of Natural Sciences of Philadelphia, Philadelphia: 152 pp.Google Scholar
  32. Cameron, N. G., H. J. B. Birks, V. J. Jones, F. Berge, J. Catalan, R. J. Flower, J. Garcia, B. Kawecka, K. A. Koinig, A. Marchetto, P. Sanchez-Castillo, R. Schmidt, M. Sisko, N. Solovieva, E. Stefkova & M. Toro, 1999. Surface-sediment and epilithic diatom pH calibration sets for remote European mountain lakes (AL: PE Project) and their comparison with the Surface Waters Acidification Programme (SWAP) calibration set. Journal of Paleolimnology 22: 291–317.Google Scholar
  33. Cleveland, W. S., 1993. Visualising Data. Hobart Press, Summit, NJ: 360 pp.Google Scholar
  34. Crucifix, M., M. F. Loutre, P. Tulkens, T. Fichefet & A. Berger, 2002. Climate evolution during the Holocene: a study with an Earth system model of intermediate complexity. Climate Dynamics 19: 43–60.Google Scholar
  35. Dahl, S. O. & A. Nesje, 1996. A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: a case study from Hardangerjokulen, central southern Norway. The Holocene 6: 381–398.Google Scholar
  36. Douglas, M. S. V. & J. P. Smol, 1999. Freshwater diatoms as indicators of environmental change in High Arctic. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge: 227–244.Google Scholar
  37. Eide, W., H. H. Birks, N. H. Bigelow, S. M. Peglar & H. J. B. Birks, 2006. Holocene forest development along the Setesdal valley, southern Norway, reconstructed from macrofossil and pollen evidence. Vegetation History and Archaeobotany 15: 65–85.Google Scholar
  38. Engstrom, D. R., S. C. Fritz, J. E. Almendinger & S. Juggins, 2000. Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408: 161–166.PubMedGoogle Scholar
  39. Etzelmüller, B., I. Berthling & J. L. Sollid, 1998. The distribution of permafrost in southern Norway – a GIS approach. Proceedings of the Seventh IPA International Conference on Permafrost, Yellowknife, Canada: 251–256.Google Scholar
  40. Fægri, K. & J. Iversen, 1989. Textbook of Pollen Analysis. Wiley, Chichester: 328 pp.Google Scholar
  41. Ford, M. S. J., 1990. A 10000-year history of natural ecosystem acidification. Ecological Monographs 60: 57–89.Google Scholar
  42. Gulliksen, S., H. H. Birks, G. Possnert & J. Mangerud, 1998. A calendar age estimate of the Younger Dryas-Holocene boundary at Kråkenes, western Norway. The Holocene 8: 249–259.Google Scholar
  43. Gunnarsdóttir, H., 1996. Holocene vegetation history and forest-limit fluctuations in Smådalen, eastern Jotunheimen, South Norway. Paläoklimaforshcung 20: 233–256.Google Scholar
  44. Gunnarsdóttir, H., 1999. Postglasial vegetasjonshistorie i Nord-Gudbrandsdalen, sentrale Sør-Norge (post-Glacial Vegetation History of Northern Gudbrandsdalen, South-Central Norway) AmS-Rapport. Museum of Archaeology, Stavanger: 113–144.Google Scholar
  45. Hald, M., C. Andersson, H. Ebbesen, E. Jansen, D. Klitgaard-Kristensen, L. Risebrobakken, G. R. Salomonsen, M. Sarnthein, H. P. Sejrup & R. J. Telford, 2007. Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene. Quaternary Science Reviews 26: 3423–3440.Google Scholar
  46. Hammarlund, D., G. Velle, B. B. Wolfe, T. W. D. Edwards, L. Barnekow, J. Bergman, S. Holmgren, S. Lamme, I. Snowball, B. Wohlfarth & G. Possnert, 2004. Palaeolimnological and sedimentary responses to Holocene forest retreat in the Scandes Mountains, west-central Sweden. Holocene 14: 862–876.Google Scholar
  47. Heegaard, E., H. J. B. Birks & R. J. Telford, 2005. Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. The Holocene 15: 612–618.Google Scholar
  48. Heiri, O. & A. F. Lotter, 2001. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. Journal of Paleolimnology 26: 343–350.Google Scholar
  49. Heiri, O., A. F. Lotter & G. Lemcke, 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.Google Scholar
  50. Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.Google Scholar
  51. Jongman, R. H. G., C. J. F. ter Braak & O. F. R. Van Tongeren, 1995. Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge: 299 pp.Google Scholar
  52. Kerwin, M. W., J. T. Overpeck, R. S. Webb, A. DeVernal, D. H. Rind & R. J. Healy, 1999. The role of oceanic forcing in mid-Holocene Northern Hemisphere climatic change. Paleoceanography 14: 200–210.Google Scholar
  53. Krammer, K. & H. Lange-Bertalot, 1986. Süsswasserflora von Mitteleuropa: Bacillariophycaea 1. Teil: Naviculaceae. Gustav Fisher Verlag, Stuttgart: 876 pp.Google Scholar
  54. Krammer, K. & H. Lange-Bertalot, 1988. Süsswasserflora von Mitteleuropa: Bacillariophycaea 2. Teil: Bacillariaceae Epithemiaceae, Surirellaceae. Gustav Fisher Verlag, Stuttgart: 596 pp.Google Scholar
  55. Krammer, K. & H. Lange-Bertalot, 1991a. Süsswasserflora von Mitteleuropa: Bacillariophycaea 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Gustav Fisher Verlag, Stuttgart: 576 pp.Google Scholar
  56. Krammer, K. & H. Lange-Bertalot, 1991b. Süsswasserflora von Mitteleuropa: Bacillariophycaea 4. Teil: Achnanthaceae. Gustav Fisher Verlag, Stuttgart: 437 pp.Google Scholar
  57. Kullman, L. & L. Kjällgren, 2006. Holocene pine tree-line evolution in the Swedish Scandes: recent tree-line rise and climate change in a long-term perspective. Boreas 35: 159–168.Google Scholar
  58. Kvamme, M., 1993. Holocene forest limit fluctuations and glacier development in the mountains of southern Norway, and their relevance to climate history. Paläoklimaforshcung 9: 99–113.Google Scholar
  59. Laaksonen, K., 1976. The dependence of mean air temperatures upon latitude and altitude in Fennoscandia (1921–1950). Annales Academiae Scientiarum Fennicae A3(199): 1–19.Google Scholar
  60. Larocque, I., 2001. How many chironomid head capsules are enough? A statistical approach to determine sample size for palaeoclimatic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 172: 133–142.Google Scholar
  61. Larocque, I. & R. I. Hall, 2003. Chironomids as quantitative indicators of mean July air temperature: validation by comparison with century-long meteorological records from northern Sweden. Journal of Paleolimnology 29: 475–493.Google Scholar
  62. Larocque, I. & R. I. Hall, 2004. Holocene temperature estimates and chironomid community composition in the Abisko Valley, northern Sweden. Quaternary Science Reviews 23: 2453–2465.Google Scholar
  63. Larocque, I., M. Grosjean, O. Heiri, C. Bigler & A. Blass, 2009. Comparison between chironomid-inferred July temperatures and meterological data AD 1850–2001 from varved Lake Silvaplana, Switzerland. Journal of Paleolimnology 41: 329–342.Google Scholar
  64. Larsen, J., V. J. Jones & W. Eide, 2006. Climatically driven pH changes in two Norwegian alpine lakes. Journal of Paleolimnology 36: 175–187.Google Scholar
  65. Lid, J. & D. T. Lid, 1994. Norsk Flora (Norwegian Flora). Samlaget, Oslo: 1014 pp.Google Scholar
  66. Lie, Ø., S. O. Dahl, A. Nesje, J. A. Matthews & S. Sandvold, 2004. Holocene fluctuations of a polythermal glacier in high-alpine eastern Jotunheimen, central-southern Norway. Quaternary Science Reviews 23: 1925–1945.Google Scholar
  67. Lindeberg, B., 1970. Tanytarsini (Diptera, Chironomidae) from northern Fennoscandia. Annales Zoologici Fennici 7: 303–312.Google Scholar
  68. Lods-Crozet, B., V. Lencioni, J. S. Olafsson, D. L. Snook, G. Velle, J. E. Brittain, E. Castella & B. Rossaro, 2001. Chironomid (Diptera: Chironomidae) communities in six European glacier-fed streams. Freshwater Biology 46: 1791–1809.Google Scholar
  69. Lods-Crozet, B., V. Lencioni, J. E. Brittain, L. Marziali & B. Rossaro, 2007. Contrasting chironomid assemblages in two high Arctic streams on Svalbard. Fundamental and Applied Limnology 170: 211–222.Google Scholar
  70. Lotter, A. F. & H. J. B. Birks, 2003. The Holocene palaeolimnology of Sagistalsee and its environmental history – a synthesis. Journal of Paleolimnology 30: 333–342.Google Scholar
  71. Matthews, J. A. & P. Q. Dresser, 2008. Holocene glacier variation chronology of the Smorstabbtindan massif, Jotunheimen, southern Norway, and the recognition of century- to millennial-scale European Neoglacial Events. Holocene 18: 181–201.Google Scholar
  72. Matthews, J. A., S. O. Dahl, M. S. Berrisford, A. Nesje, P. Q. Dresser & L. DumaynePeaty, 1997. A preliminary history of Holocene colluvial (debris-flow) activity, Leirdalen, Jotunheimen, Norway. Journal of Quaternary Science 12: 117–129.Google Scholar
  73. Matthews, J. A., M. S. Berrisford, P. Q. Dresser, A. Nesje, S. O. Dahl, A. E. Bjune, J. Bakke, H. John, B. Birks, Ø. Lie, L. Dumayne-Peaty & C. Barnett, 2005. Holocene glacier history of Bjørnbreen and climatic reconstruction in central Jotunheimen, Norway, based on proximal glaciofluvial stream-bank mires. Quaternary Science Reviews 24: 67–90.Google Scholar
  74. Miller, P. A., T. Giesecke, T. Hickler, R. H. W. Bradshaw, B. Smith, H. Seppa, P. J. Valdes & M. T. Sykes, 2008. Exploring climatic and biotic controls on Holocene vegetation change in Fennoscandia. Journal of Ecology 96: 247–259.Google Scholar
  75. Moen, A., 1999. National Atlas of Norway: Vegetation. Norwegian Mapping Authority, Hønefoss: 199 pp.Google Scholar
  76. Møller, J. & B. Holmeslet, 1998. Program Sea Level Change. http://www.imv.uit.no/annet/sealev/download/sl32.htm. University of Tromsø, Tromsø.
  77. Moore, P. D., J. A. Webb & M. E. Collinson, 1991. Pollen Analysis. Blackwell Scientific Publications, Oxford: 216 pp.Google Scholar
  78. Nesje, A., 1992. A piston corer for lacustrine and marine sediments. Arctic and Alpine Research 24: 257–259.Google Scholar
  79. Nesje, A. & S. O. Dahl, 2001. The Greenland 8200 cal. yr BP event detected in loss-on-ignition profiles in Norwegian lacustrine sediment sequences. Journal of Quaternary Science 16: 155–166.Google Scholar
  80. Nesje, A., J. A. Matthews, S. O. Dahl, M. S. Berrisford & C. Andersson, 2001. Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine sediment records. The Holocene 11: 267–280.Google Scholar
  81. Nesje, A., J. Bakke, S. O. Dahl, Ø. Lie & J. A. Matthews, 2008. Norwegian mountain glaciers in the past, present and future. Global and Planetary Change 60: 10–27.Google Scholar
  82. Nichols, H., 1967. The disturbance of arctic lake sediments by ‘‘bottom ice’’: a hazard for palynology. Arctic 20: 213–214.Google Scholar
  83. Ødegård, R. S., M. Hoelzle, K. V. Johansen & J. L. Sollid, 1996. Permafrost mapping and prospecting in southern Norway. Norsk geografisk Tidsskrift 50: 41–54.Google Scholar
  84. Odland, A., 1996. Differences in the vertical distribution pattern of Betula pubescens in Norway and its ecological significance. Paläoklimaforschung 20: 43–59.Google Scholar
  85. Ortu, E., S. Brewer & O. Peyron, 2006. Pollen-inferred palaeoclimate reconstructions in mountain areas: problems and perspectives. Journal of Quaternary Science 21: 615–627.Google Scholar
  86. Overpeck, J. T., T. Webb & I. C. Prentice, 1985. Quantitative interpretation of fossil pollen spectra – dissimilarity coefficients and the method of modern analogs. Quaternary Research 23: 87–108.Google Scholar
  87. Panizzo, V. N., V. J. Jones, H. J. B. Birks, J. F. Boyle, S. J. Brooks & M. J. Leng, 2008. A multiproxy palaeolimnological investigation of Holocene environmental change, between c. 10 700 and 7200 years BP, at Holebudalen, southern Norway. Holocene 18: 805–817.Google Scholar
  88. Paus, A., 2010. Vegetation and environment of the Rødalen alpine area, Central Norway, with emphasis on the early Holocene. Review of Palaeobotany and Palynology. 19: 29–51.Google Scholar
  89. Punt, W., et al., 1976–1995. The Northwest European Pollen Flora, Vols. I–VII. Elsevier, Amsterdam.Google Scholar
  90. Quinlan, R. & J. P. Smol, 2001. Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. Journal of Paleolimnology 26: 327–342.Google Scholar
  91. Renberg, I., 1990. A 12600 year perspective of the acidification of Lilla Öresjöen, Southwest Sweden. Philosophical Transactions of the Royal Society of London Series B 327: 357–361.Google Scholar
  92. Renberg, I., T. Korsman & N. J. Anderson, 1993. A temporal perspective of lake acidification in Sweden. Ambio 22: 264–271.Google Scholar
  93. Renssen, H., H. Goosse, T. Fichefet, V. Brovkin, E. Driesschaert & F. Wolk, 2005. Simulating the Holocene climate evolution at northern high latitudes using a coupled atmosphere-sea ice-ocean-vegetation model. Climate Dynamics 24: 23–43.Google Scholar
  94. Rymer, L., 1978. The use of uniformitarianism and analogy in palaeoecology, particularly pollen analysis. In Walker, D. & J. C. Guppy (eds), Biology and Quaternary Environments. Australian Academy of Sciences, Canberra: 245–257.Google Scholar
  95. Seppä, H. & H. J. B. Birks, 2001. July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions. The Holocene 11: 527–539.Google Scholar
  96. Smol, J. P., 1988. Paleoclimate proxy data from freshwater arctic diatoms. Verhandlungen der internationalen Vereingung theoretische und angewandte Limnologie 23: 837–844.Google Scholar
  97. Solem, J. O., T. Solem, K. Aagaard & O. Hanssen, 1997. Colonization and evolution of lakes on the central Norwegian coast following deglaciation and land uplift 9500 to 7800 years BP. Journal of Paleolimnology 18: 269–281.Google Scholar
  98. Sorvari, S., A. Korhola & R. Thompson, 2002. Lake diatom response to recent Arctic warming in Finnish Lapland. Global Change Biology 8: 171–181.Google Scholar
  99. Stevenson, A. C., S. Juggins, H. J. B. Birks, D. S. Anderson, N. J. Anderson, R. W. Battarbee, F. Berge, R. B. Davis, R. J. Flower, E. Y. Haworth, V. J. Jones, J. C. Kingston, A. M. Kreiser, J. M. Line, M. A. R. Munro & I. Renberg, 1991. The Surface Water Acidification Project Palaeolimnology Programme: Modern Diatom/Lake-Water Chemistry Data-Set. ENSIS Publishing, London: 86 pp.Google Scholar
  100. Støren, E. N., S. O. Dahl & Ø. Lie, 2008. Separation of late-Holocene episodic paraglacial events and glacier fluctuations in eastern Jotunheimen, central southern Norway. The Holocene 18: 1179–1191.Google Scholar
  101. Stuiver, M. & P. J. Reimer, 1993. Extended C-14 Data-Base and Revised Calib 3.0 C-14 Age Calibration Program http://radiocarbon.pa.qub.ac.uk/calib/calib.html. Radiocarbon 35: 215–230.
  102. Stuiver, M., P. J. Reimer, E. Bard, J. W. Beck, G. S. Burr, K. A. Hughen, B. Kromer, G. Mc Cormac, J. van der Plicht & M. Spurk, 1998. INTCAL98 radiocarbon age calibration, 24,000–0 cal B.P. Radiocarbon 40: 527–539.Google Scholar
  103. Sutherland, D. G., 1984. Modern glacier characteristics as a basis for inferring former climates with a particular reference to the Loch Lomond Stadial. Quaternary Science Reviews 3: 291–309.Google Scholar
  104. ter Braak, C. J. F. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269(270): 485–502.Google Scholar
  105. Velle, G. & I. Larocque, 2008. Assessing chironomid head capsule concentrations in sediment using exotic markers. Journal of Paleolimnology 40: 165–177.Google Scholar
  106. Velle, G., S. J. Brooks, H. J. B. Birks & E. Willassen, 2005a. Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia. Quaternary Science Reviews 24: 1429–1462.Google Scholar
  107. Velle, G., J. Larsen, W. Eide, S. M. Peglar & H. J. B. Birks, 2005b. Holocene environmental history and climate of Ratasjoen, a low-alpine lake in south-central Norway. Journal of Paleolimnology 33: 129–153.Google Scholar
  108. Velle, G., K. P. Brodersen, H. J. B. Birks & E. Willassen, in press. Midges as quantitative temperature indicator species: lessons for palaeoecology. The Holocene.Google Scholar
  109. Vorren, K.-D., T. Alm & B. Mørkved, 1996. Holocene pine (Pinus sylvestris L.) and grey alder (Alnus incana Moench.) immigration and areal oscillation in central Troms, northern Norway, and their palaeoclimatic implications. Paläoklimaforshcung 20: 271–290.Google Scholar
  110. Walker, I. R. & G. M. Macdonald, 1995. Distributions of Chironomidae (Insecta, Diptera) and other fresh-water midges respect to treeline, Northwest-Territories, Canada. Arctic and Alpine Research 27: 258–263.Google Scholar
  111. Willemse, N. W. & T. E. Törnquist, 1999. Holocene century-scale temperature variability from West Greenland lake records. Geology 27: 580–584.Google Scholar
  112. Wright, H. E. J., 1984. Sensitivity and response time of natural systems to climate change in the Late Quaternary. Quaternary Science Reviews 3: 91–131.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Gaute Velle
    • 1
    Email author
  • Anne E. Bjune
    • 2
  • Jorunn Larsen
    • 3
  • H. John B. Birks
    • 3
    • 4
  1. 1.Bergen MuseumUniversity of BergenBergenNorway
  2. 2.Bjerknes Centre for Climate Research, c/o Department of BiologyUniversity of BergenBergenNorway
  3. 3.Department of BiologyUniversity of BergenBergenNorway
  4. 4.Environmental Change Research CentreUniversity College LondonLondonUK

Personalised recommendations