, Volume 648, Issue 1, pp 109–122 | Cite as

Palaeolimnological evidence of environmental change over the last 400 years in the Rwenzori Mountains of Uganda

  • Gayle McGlynnEmail author
  • Anson W. Mackay
  • Neil L. Rose
  • Richard G. Taylor
  • Melanie J. Leng
  • Daniel R. Engstrom


Tropical alpine areas may be highly sensitive to climate change. Yet, because high-resolution palaeoenvironmental studies in these regions are scant, patterns of environmental change over the last few centuries, and linkages with regional changes, remain poorly resolved. This article presents a 400-year palaeolimnological record from Lower Kitandara Lake (3,989 m above m.a.s.l.), located in the Rwenzori Mountains of Uganda, where marked glacial recession has been recorded over much of the twentieth century. An age model is produced for a 57.5 cm sediment core based on 210Pb and 14C dating, suggesting a basal date of approximately 1600 AD. Diatom and organic geochemistry (%TOC, C/N ratios, δ13C) analyses are carried out at an approximately decadal resolution. Twentieth-century glacial recession does not appear to have significantly impacted either the diatom or geochemical records. However, large ecological changes have occurred during the past 400 years, particularly shown by the diatom fluxes and geochemical data. Throughout the core, the diatom record reveals only minor changes in assemblage composition, which may be related to the dominance of Staurosira construens var. venter in the lake’s diatom flora, a tychoplanktonic taxon which is highly adaptive to environmental change. Geochemical analyses, however, reveal a marked change at around the end of the eighteenth century, when C/N ratios suggest an increase in the dominance of algal aquatic sources to lacustrine organic matter, concomitant with a stabilisation of catchment inputs and increased diatom productivity, which may have been caused by reduced glacial inputs. The relationship between these changes at Lower Kitandara Lake and wider regional climate change that occurred at the end of the eighteenth century is not well understood, but this study highlights the need for additional research to link drivers of alpine ecosystem change with those operating at low altitudes.


Rwenzori Mountains East Africa Palaeolimnology Diatoms Organic carbon 



Research was conducted with permission of the Ugandan National Council of Science and Technology (No. NS 145) and the Uganda Wildlife Authority (UWA). Research was made possible by a grant from the Royal Geographical Society (Ralph Brown Ward 2003) to Taylor, Rose and Mackay. Monies for radiocarbon dating were provided by the ECRC Trust Fund. The authors are grateful for field assistance provided by the Rwenzori Mountaineering Service, Immaculate Ssemmanda (Makerere University), Virginia Panizzo (UCL) and Nelson Guma (UWA).


  1. Appleby, P. G. & F. Oldfield, 1978. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1–8.CrossRefGoogle Scholar
  2. Battarbee, R. W. & M. J. Kneen, 1982. The use of electronically counted microspheres in absolute diatom analysis. Limnology and Oceanography 27: 184–188.CrossRefGoogle Scholar
  3. Battarbee, R. W., V. J. Jones, R. J. Flower, N. G. Cameron, H. Bennion, L. Carvalho & S. Juggins, 2001. Diatoms. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht, The Netherlands: 155–205.Google Scholar
  4. Bengtsson, L. & M. Enell, 1986. Chemical analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley & Sons Ltd, London.Google Scholar
  5. Bennett, K. D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132: 155–170.CrossRefGoogle Scholar
  6. Bessems, I., D. Verschuren, J. M. Russell, J. Hus, F. Mees & B. F. Cumming, 2008. Palaeolimnological evidence for widespread late 18th century drought across equatorial East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 259: 107–120.CrossRefGoogle Scholar
  7. Birks, H. J. B. & A. D. Gordon, 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press, London.Google Scholar
  8. Bradley, R., 2000. 1000 Years of climate change. Science 288: 1353–1355.CrossRefGoogle Scholar
  9. Camburn, K. E. & D. F. Charles, 2000. Diatoms of Low Alkalinity Lakes in the Northeastern United States. The Academy of Natural Sciences of Philadelphia, Philadelphia.Google Scholar
  10. Cocquyt, C., 1998. Diatoms from the Northern Basin of Lake Tanganyika. J. Cramer, Berlin.Google Scholar
  11. Cocquyt, C. & R. Jahn, 2007. Surirella engleri O. Müller – a study of its original infraspecific types, variability and distribution. Diatom Research 22: 1–16.Google Scholar
  12. Cole, G. A., 1975. Textbook of Limnology. Mosby Company, St. Louis.Google Scholar
  13. Diaz, H. F., M. Grosjean & L. Graumlich, 2003. Climate variability and change in high elevation regions: past, present and future. Climatic Change 59: 1–4.CrossRefGoogle Scholar
  14. Eggermont, H., D. Verschuren, L. Audenaert, L. Lens, J. Russell, G. Klaassen, O. Heiri. Limnological and ecological sensitivity of Rwenzori Mountain lakes to climate warming. Hydrobiologia. doi: 10.1007/s10750-010-0140-z.
  15. Eggermont, H., J. M. Russell, G. Schettler, K. Van Damme, I. Bessems & D. Verschuren, 2007. Physical and chemical limnology of alpine lakes and pools in the Rwenzori Mountains (Uganda-DR Congo). Hydrobiologia 592: 151–173.CrossRefGoogle Scholar
  16. Gasse, F., 1986. East African Diatoms: Taxonomy, Ecological Distribution. Cramer, Stuttgart.Google Scholar
  17. Glew, J. R., 1991. Miniature gravity corer for recovering short sediment cores. Journal of Paleolimnology 5: 285–287.CrossRefGoogle Scholar
  18. Hastenrath, S., 2001. Variations of East African climate during the past two centuries. Climatic Change 50: 209–217.CrossRefGoogle Scholar
  19. Hastenrath, S., 2010. Climate forcing of glacier thinning on the mountains of equatorial East Africa. International Journal of Climatology 30: 146–152.Google Scholar
  20. Hastenrath, S. & P. D. Kruss, 1992. The dramatic retreat of Mount Kenya’s glaciers between 1963 and 1987: greenhouse forcing. Annals of Glaciology 16: 127–133.Google Scholar
  21. Jones, P. D. & M. E. Mann, 2004. Climate over past millennia. Reviews of Geophysics 42.Google Scholar
  22. Juggins, S., 1992. ZONE (version 1.2): An MSDOS Program for Transformation and Zonation of Palaeoecological Data. Department of Geography, University of Newcastle, Newcastle.Google Scholar
  23. Kalff, J., 2002. Limnology. Prentice Hall, New Jersey.Google Scholar
  24. Karlen, W., J. L. Fastook, K. Holmgren, M. Malmstrom, J. A. Matthews, E. O. Odada, J. Risberg, G. Rosqvist, P. Sandgren, A. Shemesh & L. O. Westerberg, 1999. Glacier fluctuations on Mount Kenya since ~6000 cal. years BP: implications for climatic change in Africa. Ambio 28: 409–418.Google Scholar
  25. Kaser, G., D. R. Hardy, T. Mölg, R. S. Bradley & T. M. Hyera, 2004. Modern glacier retreat on Kilimanjaro as evidence of climate change: observations and facts. International Journal of Climatology 24: 329–339.CrossRefGoogle Scholar
  26. Keeling, C. D., W. D. Mook & P. P. Tans, 1979. Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature 277: 121–123.CrossRefGoogle Scholar
  27. Krammer, K., 1992. Pinnularia: eine Monographie der europäischen Taxa. J. Cramer, Berlin.Google Scholar
  28. Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae 1. Teil: Naviculaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa, Band 2/1. Gustav Fischer Verlag, Jena, Germany. Google Scholar
  29. Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa, Band 2/2. Gustav Fischer Verlag, Jena, Germany.Google Scholar
  30. Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag, Jena, Germany.Google Scholar
  31. Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolate) und Gomphonema. In Ettl, H., G. Gärtner, J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa, Band 2/4. Gustav Fischer Verlag, Jena, Germany.Google Scholar
  32. Lamb, H. F., M. J. Leng, R. J. Telford, T. Ayenew & M. Umer, 2007. Oxygen and carbon isotope composition of authigenic carbonate from an Ethiopian lake: a climate record of the last 2000 years. The Holocene 17: 517–526.CrossRefGoogle Scholar
  33. Lange-Bertalot, H. & G. Moser, 1994. Brachysira: Monographie der Gattung. J. Cramer, Berlin.Google Scholar
  34. Legesse, D., F. Gasse, O. Radakovitch, C. Vallet-Coulomb, R. Bonnefille, D. Verschuren, E. Gibert & P. Barker, 2002. Environmental changes in a tropical lake (Lake Abiyata, Ethiopia) during recent centuries. Palaeogeography, Palaeoclimatology, Palaeoecology 187: 233–258.CrossRefGoogle Scholar
  35. Leng, M. J. & J. D. Marshall, 2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews 23: 811–831.CrossRefGoogle Scholar
  36. Leps, J. & P. Smilauer, 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  37. Line, J. M. & H. J. B. Birks, 1996. BSTICK Version 1.0. Unpublished computer program. Botanical Institute, University of Bergen.Google Scholar
  38. Livingstone, D. A., 1967. Postglacial vegetation of the Ruwenzori Mountains in equatorial Africa. Ecological Monographs 37: 25–52.CrossRefGoogle Scholar
  39. Maddy, D. & J. S. Brew, 1995. Statistical Modelling of Quaternary Science Data. Technical Guide 5. Quaternary Research Association, Cambridge.Google Scholar
  40. Meyers, P. A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114: 289–302.CrossRefGoogle Scholar
  41. Meyers, P. A. & J. L. Teranes, 2001. Sediment organic matter. In Last, W. M. & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods. Kluwer Academic Publishers, Dordrecht, The Netherlands: 239–269.Google Scholar
  42. Mölg, T., H. Rott, G. Kaser, A. Fischer & N. J. Cullen, 2006. Comment on “Recent glacial recession in the Rwenzori Mountains of East Africa due to rising air temperatures” by Taylor, R. G., Miliham, L. J., Tindimugaya, C., Majugu, A., Muwanga, A. & Nakileza, N. Geophysical Research Letters 33: L20404.Google Scholar
  43. Mölg, T., N. J. Cullen, D. R. Hardy, G. Kaser & L. Klok, 2008. Mass balance of a slope glacier on Kilimanjaro and its sensitivity to climate. International Journal of Climatology 28(7): 881–892.CrossRefGoogle Scholar
  44. Nicholson, S. E. & X. Yin, 2001. Rainfall conditions in equatorial East Africa during the nineteenth century as inferred from the record of Lake Victoria. Climatic Change 478: 387–398.CrossRefGoogle Scholar
  45. Osmaston, H., 2006. Guide to the Rwenzori: The Mountains of the Moon. The Rwenzori Trust, United Kingdom.Google Scholar
  46. Panizzo, V. N., A. W. Mackay, I. Ssemmanda, R. Taylor, N. Rose & M. J. Leng, 2008. A 140-year record of recent changes in aquatic productivity in a remote, tropical alpine lake in the Rwenzori Mountain National Park, Uganda. Journal of Paleolimnology 40: 325–338.CrossRefGoogle Scholar
  47. Ponader, K. C. & M. G. Potapova, 2007. Diatoms from the genus Achnanthidium in flowing waters of the Appalachian Mountains (North America): ecology, distribution and taxonomic notes. Limnologica 37: 227–241.Google Scholar
  48. Reimer, P. J., M. G. L. Baillie, E. Bard, A. Bayliss, J. W. Beck, C. J. H. Bertrand, P. G. Blackwell, C. E. Buck, G. S. Burr, K. B. Cutler, P. E. Damon, R. L. Edwards, R. G. Fairbanks, M. Friedrich, T. P. Guilderson, A. G. Hogg, K. A. Hughen, B. Kromer, G. McCormac, S. Manning, C. Bronk Ramsey, R. W. Reimer, S. Remmele, J. R. Southon, M. Stuiver, S. Talamo, F. W. Taylor, J. van der Plicht & C. E. Weyhenmeyer, 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46: 1029–1058.Google Scholar
  49. Russell, J. M. & T. C. Johnson, 2005. A high-resolution geochemical record from Lake Edward, Uganda Congo and the timing and causes of tropical African drought during the late Holocene. Quaternary Science Reviews 24: 1375–1389.CrossRefGoogle Scholar
  50. Russell, J. M. & T. C. Johnson, 2007. Little Ice Age drought in equatorial Africa: Intertropical Convergence Zone migrations and El Nino-Southern Oscillation variability. Geology 35: 21–24.CrossRefGoogle Scholar
  51. Russell, J. M., D. Verschuren & H. Eggermont, 2007. Spatial complexity of ‘Little Ice Age’ climate in East Africa: sedimentary records from two crater lake basins in western Uganda. The Holocene 17: 183–193.CrossRefGoogle Scholar
  52. Russell, J. M., H. Eggermont, R. Taylor & D. Verschuren, 2009. Paleolimnological records of recent glacier recession in the Rwenzori Mountains, Uganda-D.R. Congo. Journal of Paleolimnology 41: 253–271.CrossRefGoogle Scholar
  53. Ryner, M., K. Holmgrem & D. Taylor, 2008. A record of vegetation dynamics and lake level changes from Lake Emakat, northern Tanzania, during the last c. 1200 years. Journal of Paleolimnology 40: 583–601.CrossRefGoogle Scholar
  54. Sayer, C. D., 2001. Problems with the application of diatom-total phosphorus transfer functions: examples from a shallow English lake. Freshwater Biology 46: 743–757.CrossRefGoogle Scholar
  55. Sonneman, J. A., A. Sincock, J. Fluin, M. Reid, P. Newall, J. Tibby & P. Gell, 1999. An illustrated guide to common stream diatom species from temperate Australia. Co-operative Research Centre for Freshwater Ecology (Identification Guide No. 33), Thurgoona, Australia.Google Scholar
  56. Ssemmanda, I., D. B. Ryves, O. Bennike & P. G. Appleby, 2005. Vegetation history in western Uganda during the last 1200 years: a sediment-based reconstruction from two crater lakes. The Holocene 15: 119–132.CrossRefGoogle Scholar
  57. Stager, J. C., D. B. Ryves, B. Cumming, L. Meeker & J. Beer, 2005. Solar variability and the levels of Lake Victoria, East Africa, during the last millennium. Journal of Paleolimnology 33: 243–251.CrossRefGoogle Scholar
  58. Taylor, R. G. & K. W. F. Howard, 1998. Post-Palaeozoic evolution of weathered landsurfaces in Uganda by tectonically controlled cycles of deep weathering and stripping. Geomorphology 25: 173–192.CrossRefGoogle Scholar
  59. Taylor, R. G., L. Mileham, C. Tindimugaya, A. Majugu, A. Muwanga & B. Nakileza, 2006. Recent glacial recession in the Rwenzori Mountains of East Africa due to rising air temperature. Geophysical Research Letters 33: L10402.CrossRefGoogle Scholar
  60. ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Advances in Ecological Research 18: 271–317.CrossRefGoogle Scholar
  61. ter Braak, C. J. F. & P. Smilauer, 2002. CANOCO Reference Manual and Canodraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY.Google Scholar
  62. Thompson, L. G., E. Mosley-Thompson, M. E. Davis, K. A. Henderson, H. H. Brecher, V. S. Zagorodnov, T. A. Mashiotta, P.-N. Lin, V. N. Mikhalenko, D. R. Hardy & J. Beer, 2002. Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science 298: 589–593.CrossRefPubMedGoogle Scholar
  63. Tyson, R. V., 1995. Sedimentary Organic Matter: Organic Facies and Palynofacies. Chapman and Hall, London.Google Scholar
  64. Verschuren, D., K. R. Laird & B. F. Cumming, 2000. Rainfall and drought in equatorial east Africa during the past 1, 100 years. Nature 403: 410–413.CrossRefPubMedGoogle Scholar
  65. Whittow, J. B., 1960. Some observations on the snowfall of Ruwenzori. Journal of Glaciology 3: 765–772.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Gayle McGlynn
    • 1
    • 2
    Email author
  • Anson W. Mackay
    • 1
  • Neil L. Rose
    • 1
  • Richard G. Taylor
    • 1
  • Melanie J. Leng
    • 3
  • Daniel R. Engstrom
    • 4
  1. 1.Environmental Change Research Centre, Department of GeographyUniversity College LondonLondonUK
  2. 2.Department of Geography, School of Natural SciencesTrinity College DublinDublin 2Ireland
  3. 3.NERC Isotope Geosciences LaboratoryBritish Geological SurveyNottinghamUK
  4. 4.St. Croix Watershed Research Station, Science Museum of MinnesotaMarine on St. CroixUSA

Personalised recommendations