Advertisement

Hydrobiologia

, Volume 648, Issue 1, pp 3–18 | Cite as

Ecological changes in the highest temporary pond of western Crete (Greece): past, present and future

  • Dany Ghosn
  • Ioannis N. VogiatzakisEmail author
  • George Kazakis
  • Elias Dimitriou
  • Elias Moussoulis
  • Valentini Maliaka
  • Ierotheos Zacharias
MOUNTAIN LAKES

Abstract

This study explores the past, present and future ecological changes in the highest Mediterranean temporary pond (Omalos pond) in western Crete, Greece. Data from downcore pollen analysis (including pollen and spores from both aquatic vegetation, and terrestrial herbaceous, arboreal and shrub vegetation), modern vegetation monitoring and existing climate scenarios have been combined to provide a picture of the ecological changes in the pond over the last 13,600 years. Downcore pollen analysis throughout the last 13,600 years indicated the presence of species typical of Mediterranean Temporary Pond (MTP) habitats and suggested relatively drier conditions towards the present. The low number of non-native, cultivated species (such as herbaceous Trifolium and Plantago species) observed over this period suggested relatively low impact from crop agriculture, despite the increasing grazing pressure in the area. In the absence of independent proxies, we cannot reliably distinguish between natural and human-induced changes. The presence of aquatic Isoetes in the palaeo-record indicates the existence of an ephemeral pond in the area as early as the beginning of the Holocene suggesting resilience of the ecosystem over time. However, the degraded state of pollen in depths over 55 cm (i.e. 3600 year BP) increases the uncertainty of the interpretation. Currently, the pond holds 76 plant species belonging to 25 families. Therophytes and chamaephytes were the most frequent, suggesting a typical ephemeral habitat life form spectrum. Species richness was found to increase during spring surveys whereas the highest turnover was observed between summer surveys of consecutive years. Cluster analysis demonstrated a distinct zonation in four vegetation belts from the periphery to the centre of the pond which is typical of these environments. Modelling, based on two IPPC scenarios (A2 and B2), predicted relatively low climate change impacts on the pond’s hydroperiod for the next 100 years (i.e. a decrease of 16 and 24 days, respectively). This reduction in the hydroperiod of the pond will have an effect on the physiognomy and spatial extent of vegetation, particularly for the transitional belts between the core and its outer area, while it will exert more pressure on the pond as a water resource for sheep in the region. However, cumulative effects and complex interactions of climate-driven environmental changes and other anthropogenic disturbances might act synergistically to accelerate impacts in the future.

Keywords

Aegean Climate change Lefka Ori Mediterranean Pollen analysis 

Notes

Acknowledgements

This research was funded by the LIFE Nature Programme ‘Actions for the conservation of Mediterranean Temporary Ponds in Crete’ LIFE04NAT/GR/000105). We are grateful to Mrs. Christina Fournaraki, curator at the Herbarium of MAICh, for her help in species identification. We would also like to thank two anonymous reviewers and the editors whose comments resulted in a much improved manuscript.

References

  1. Álvarez-Cobelas, M., J. Catalan & D. de Garcia Jalón, 2005. Impacts on inland aquatic ecosystems. In Moreno, J. M. (ed.), Effects of Climate Change in Spain. Ministerio de Medio Ambiente, Madrid, Spain: 113–146.Google Scholar
  2. Angélibert, S., P. Marty, R. Céréghino & N. Giani, 2004. Seasonal variations in the physical and chemical characteristics of ponds: implications for biodiversity conservation. Aquatic Conservation 14: 439–456.CrossRefGoogle Scholar
  3. Atherden, M. A. & J. A. Hall, 1999. Human impact on vegetation in the White Mountains of Crete since AD 500. Holocene 9: 183–193.CrossRefGoogle Scholar
  4. Bartolomé, C., J. Álvarez, J. Vaquero, M. Costa, M. A. Casermeiro, J. Giraldo & J. Zamora, 2005. Los habitats de interés comunitario de España. Guía Básica. Ministerio de Medio Ambiente. Dirección General para la Biodiversidad, Madrid. http://www.mma.es/portal/secciones/biodiversidad/rednatura2000/documentos_rednatura/tipos_habit_interes.htm.
  5. Bauder, E., 2005. The effects of an unpredictable precipitation regime on vernal pool hydrology. Freshwater Biology 50: 2129–2135.CrossRefGoogle Scholar
  6. Beja, P. & R. Alcazar, 2003. Conservation of Mediterranean temporary ponds under agricultural intensification, an evaluation using amphibians. Biological Conservation 114: 317–326.CrossRefGoogle Scholar
  7. Belk, D., 1998. Global status and trends in ephemeral pool invertebrate conservation: Implications for Californian fairy shrimp. In Witham, C. W., D. Belk, W. R. Ferren & R. Ornduff (eds), Ecology. Conservation and Management of Vernal Pool Ecosystems, Sacramento: 147–150.Google Scholar
  8. Bergmeier, E., 2005. Short Report on the Environment, Flora and Vegetation of the “Omalos Pond”. University of Göttingen, Germany. LIFE Nature 2004 “Actions for the Conservation of the Mediterranean Temporary Ponds in Crete”.Google Scholar
  9. Blaustein, L. & S. S. Schwartz, 2001. Why study ecology in temporary pools? Journal of Zoology 47: 303–312.Google Scholar
  10. Bottema, S. & A. Sarpaki, 2003. Environmental change in Crete: a 9000-year record of Holocene vegetation history and the effect of the Santorini eruption. The Holocene 13: 733–749.CrossRefGoogle Scholar
  11. Brendonck, L. & W. D. Williams, 2000. Biodiversity in wetlands of dry regions (drylands). In Gopal, B., W. J. Junk & J. A. Davis (eds), Biodiversity in Wetlands: Assessment Function and Conservation, Vol. 1. Backhuys Publishers, Leiden: 181–194.Google Scholar
  12. Carpenter, S. R., S. G. Fisher, N. B. Grimm & J. F. Kitchell, 1992. Global change and freshwater ecosystems. Annual Review of Ecology and Systematics 23: 119–139.CrossRefGoogle Scholar
  13. Cereghino, R., J. Biggs, B. Oertli & S. Declerck, 2008. The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597: 1–6.CrossRefGoogle Scholar
  14. Chilton, L. & N. J. Turland, 1997. Flora of Crete: a supplement. Marengo Publications, Retford.Google Scholar
  15. Council of Europe, 1992. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Communities L 206: 7–50.Google Scholar
  16. Crossle, K. & M. A. Brock, 2002. How do water regime and clipping influence plant establishment from seed banks and subsequent reproduction? Aquatic Botany 74: 43–56.CrossRefGoogle Scholar
  17. Dale, V. H., 1997. The relationship between land-use change and climate change. Ecological Processes 7: 753–769.Google Scholar
  18. Deil, U., 2005. A review on habitats, plant traits and vegetation of ephemeral wetlands – a global perspective. Phytocoenologia 35: 533–705.CrossRefGoogle Scholar
  19. Diaz, H. F. & R. S. Bradley, 1997. Temperature variations during the last century at high elevation sites. Climatic Change 21: 21–47.Google Scholar
  20. Dimitriou, E., I. Karaouzas, N. Skoulikidis & I. Zacharias, 2006. Assessing the environmental status of Mediterranean temporary ponds in Greece. Annales de Limnologie-International Journal of Limnology 42: 33–41.CrossRefGoogle Scholar
  21. Egli, B. R., 1993. Oecologie der Dolinen im Gebirge Kretas (Griechenland) Inaugural Dissertation zur Erlagung der philosophischen Doktorwurde vorgelegt der Philosophischen. Fakultat II der Universitat, Zurich.Google Scholar
  22. European Commission DG Environment, 2003. Interpretation manual of European Union habitats – directive. Natura 2000, Nature and Biodiversity EUR 25: 32–33.Google Scholar
  23. Faegri, K. & J. Iversen, 1989. Textbook of Pollen Analysis. John Wiley & Sons, New York.Google Scholar
  24. Ferrati, R., G. A. Canziani & D. R. Moreno, 2005. Esteros del Ibera: hydrometeorological and hydrological characterization. Ecological Modelling 186: 3–15.CrossRefGoogle Scholar
  25. Firth, P. & S. G. Fisher (eds), 1992. Global Climate Change and Freshwater Ecosystems. Springer Verlag, New York.Google Scholar
  26. Gaudillat, V. & J. Haury (coord.), 2002. « Cahiers d’habitats » Natura 2000. Connaissance et gestion des habitats et des espèces d’intérêt communautaire. Tome 3 - Habitats humides. MATE/MAP/MNHN. Éd. La Documentation française, Paris, 457 p. + cédérom. http://natura2000.environnement.gouv.fr/habitats/cahiers.html.
  27. Goodson, J. M., A. M. Gurnell, P. G. Angold & I. P. Morrissey, 2001. Riparian seed banks: structure, process and implications for riparian management. Progress in Physical Geography 25: 301–325.Google Scholar
  28. Graham, T. B., 2002. Survey of aquatic macro invertebrates and amphibians at Wapatki National Monument, Arizona, USA: an evaluation of selected factors affecting species richness in ephemeral pools. Hydrobiologia 486: 215–224.CrossRefGoogle Scholar
  29. Grillas, P., P. Gauthier, N. Yavercovski & C. Perennou, 2004. Mediterranean Temporary Pools; Vol. 1 – Issues Relating to Conservation, Functioning and Management. Station biologique de la Tour du Valat, France.Google Scholar
  30. Hammer, O., D. A. T. Harper & P. D. Ryan, 2009. PAST – PAlaeontological STatistics, ver. 1.88. User’s manual.Google Scholar
  31. Hartig, E. K., O. Grozev & C. Rosenzweig, 1997. Climate change, agriculture and wetlands in eastern Europe: vulnerability, adaptation and policy. Climate Change 36: 107–121.CrossRefGoogle Scholar
  32. Hill, N. M. & P. Keddy, 1992. Prediction of rarities from habitat variables: coastal plain plants on Nova Scotian lakeshores. Ecology 73: 1852–1859.CrossRefGoogle Scholar
  33. Hughes, L., 2000. Biological consequences of global warming: is the signal already apparent? Trends in Ecology & Evolution 15: 56–61.CrossRefGoogle Scholar
  34. IPCC (Intergovernmental Panel on Climate Change), 2007. Climate Change: Working Group I: The Scientific Basis. [Online] Retrieved from the web: http://www.grida.no/climate/ipcc_tar/wg1/008.htm.
  35. Jahn, R. & P. Schönfelder, 1995. Exkursionflora für Kreta. Ulmer, Stuttgart.Google Scholar
  36. Jakob, C., G. Poizat, M. Veith, A. Seitz & A. J. Crivelli, 2003. Breeding phenology and larval distribution of amphibians in a Mediterranean pond network with unpredictable hydrology. Hydrobiologia 499: 51–61.CrossRefGoogle Scholar
  37. Kazakis, G. & D. Ghosn, 2006. Investigation of Grazing and Watering Capacity of MTPs (Action A6). Mediterranean Agronomic Institute of Chania, Greece. LIFE Nature 2004 “Actions for the Conservation of the Mediterranean Temporary Ponds in Crete”.Google Scholar
  38. Kent, M. & P. Coker, 1994. Vegetation Description and Analysis: A Practical approach. Belhaven Press, London.Google Scholar
  39. Krebs, C. J., 1999. Ecological Methodology, 2nd ed. Addison-Wesley Educational Publishers, Inc.Google Scholar
  40. Lahr, J., A. O. Diallo, B. Gadji, P. S. Diouf, J. J. M. Bedaux, A. Badji, K. B. Ndour, J. E. Andreasen & N. M. Van Straalen, 2000a. Ecological effects of experimental insecticide applications on invertebrates in Sahelian temporary ponds. Environmental Toxicology and Chemistry 19: 1278–1289.CrossRefGoogle Scholar
  41. Lahr, J., B. Gadji & D. Dia, 2000b. Predicted buffer zones to protect temporary pond invertebrates from ground-based insecticide applications against desert locusts. Crop Protection 19: 489–500.CrossRefGoogle Scholar
  42. Lake, P. S., M. A. Palmer, P. Biro, J. Cole, A. P. Covich, C. Dahm, J. Gibert, W. Goedkoop, K. Martens & J. Verhoeven, 2000. Global change and the biodiversity of freshwater ecosystems: impacts on linkages between above-sediment and sediment biota. BioScience 50: 1099–1107.CrossRefGoogle Scholar
  43. Lodge, D. M., 2001. Responses of lake biodiversity to global changes. In Sala, O. E., F. S. Chapin & E. Huber-Sannwald (eds), Future Scenarios of Global Biodiversity. Springer Verlag, New York: 277–313.Google Scholar
  44. Madhyastha, M. N., K. C. Shashikumar & P. D. Rekha, 2000. Temporary ponds – a neglected ecosystem. Proceedings of Lake 2000: Restoration of Lakes and Wetlands. Section 6, Limnology, Watershed Hydrology and Monitoring, Paper 6, Bangalore, India.Google Scholar
  45. Magnusson, J. J., K. E. Webster, R. A. Assel, C. J. Bowser, P. J. Dillon, J. G. Eaton, H. E. Evans, E. J. Fee, R. I. Hall, L. R. Mortsch, D. W. Schindler & F. H. Quinn, 1997. Potential effects of climate changes on aquatic ecosystems: Laurentian Great Lakes and Precambrian Shield region. Hydrological Processes 11: 825–871.CrossRefGoogle Scholar
  46. Mann, M. E., Z. Zhang, M. K. Hughes, R. S. Bradley, S. K. Miller, S. Rutherford & F. Ni, 2008. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. PNAS 105: 13252–13257.CrossRefPubMedGoogle Scholar
  47. McCarthy, J. J., O. V. Canziani, N. A. Leary, D. J. Dokken & K. S. White (eds), 2001. Climate Change 2001: Impacts, Adaptation, and Vulnerability. Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK. Available from: http://www.ipcc.ch.
  48. McCarty, J. P., 2001. Ecological consequences of recent climate change. Conservation Biology 15: 320–331.CrossRefGoogle Scholar
  49. Metge, G., 1986. Etude des ecosystemes hydromorphes (daja et merdja) de la Meseta Occidentale Marocaine. These Doct. Fac. Sci., Marseille: 280 pp.Google Scholar
  50. Moore, P. D., J. A. Webb & M. E. Collinson, 1991. Pollen Analysis. Blackwell Scientific, London.Google Scholar
  51. Mortsch, L. D., 1998. Assessing the impact of climate change on the Great Lakes shoreline wetlands. Climate Change 40: 391–416.CrossRefGoogle Scholar
  52. Müller, J. V. & U. Deil, 2005. The ephemeral vegetation of seasonal and semi-permanent ponds in tropical West Africa. Phytocoenologia 35: 327–388.CrossRefGoogle Scholar
  53. Nicolet, P., J. Biggs & G. Fox, 2004. The wetland plant and macroinvertebrate assemblages of temporary ponds in England and Wales. Biological Conservation 120: 261–278.CrossRefGoogle Scholar
  54. Paine, R. T., M. J. Tegner & E. A. Johnson, 1998. Compounded perturbations yield ecological surprises. Ecosystems 1: 535–545.CrossRefGoogle Scholar
  55. Parmesan, C. & G. Yohe, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.CrossRefPubMedGoogle Scholar
  56. Poff, N. L., M. A. Brinson & J. W. Day, 2002. Aquatic Ecosystems and Global Climate Change: Potential Impacts on Inland Freshwater and Coastal Wetland Ecosystems in the United States. PEW Center on Global Climate Change, Arlington, VA. Available from: www.pewclimate.org.
  57. Pyke, C. R., 2004. Habitat loss confounds climate change impact. Frontiers in Ecology and the Environment 2: 178–182.CrossRefGoogle Scholar
  58. Ramsar Convention Secretariat, 2002. Resolution VIII.33. Guidance for identifying, sustainably managing, and designating temporary pools as Wetlands of International Importance. http://www.ramsar.org/ris/key_ris.htm#type.
  59. Reille, M., 1995. Pollen et spores d’europe et d’afrique du nord, supplement 1. Laboratoire de Botanique historique et Palynologie, Marseille: 331 pp.Google Scholar
  60. Rhazi, L., P. Grillas, A. Mounirou Touré & L. Tan Ham, 2001a. Impact of land use and activities on water, sediment and vegetation of temporary pools in Morocco. Comptes Rendus de l’Académie des Sciences Paris Life Sciences 324: 165–177.CrossRefGoogle Scholar
  61. Rhazi, L., P. Grillas, L. Tan Ham & D. El Khyari, 2001b. The seed bank and the between years dynamics of the vegetation of a Mediterranean temporary pool (NW Morocco). Ecologia Mediterranea 27: 69–88.Google Scholar
  62. Rhazi, M., P. Grillas, A. Charpentier & F. Médail, 2004. Experimental management of Mediterranean temporary pools for conservation of the rare quillwort Isoetes setacea. Biological Conservation 118: 675–684.CrossRefGoogle Scholar
  63. Rhazi, L., M. Rhazi, P. Grillas & D. El Khyari, 2006. Richness and structure of plant communities in temporary pools from western Morocco: influence of human activities. Hydrobiologia 570: 197–203.CrossRefGoogle Scholar
  64. Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. J. Rosenzweig & J. A. Pounds, 2003. Fingerprints of global warming on wild animals and plants. Nature 421: 57–60.CrossRefPubMedGoogle Scholar
  65. Roshier, D. A., P. H. Whetton, R. J. Allan & I. Robertson, 2001. Distribution and persistence of temporary wetland habitats in arid Australia in relation to climate. Austral Ecology 26: 371–384.CrossRefGoogle Scholar
  66. Schindler, D. W., 2001. The cumulative effects of climate warming and other stresses on Canadian freshwaters in the new millennium. Canadian Journal of Fisheries and Aquatic Sciences 58: 18–29.CrossRefGoogle Scholar
  67. Schwartz, S. & D. Jenkins, 2000. Temporary aquatic habitats, constraints and opportunities. Aquatic Ecology 34: 3–8.CrossRefGoogle Scholar
  68. Semlitsch, R. D. & J. R. Bodie, 1998. Are small, isolated wetlands expendable? Conservation Biology 12: 1129–1133.CrossRefGoogle Scholar
  69. Snodgrass, J. W., M. J. Komoroski Jr., A. L. Bryan & J. Burger, 2000. Relationships among isolated wetland size, hydroperiod, and amphibian species richness: implications for wetland regulations. Conservation Biology 14: 414–419.CrossRefGoogle Scholar
  70. Spencer, M., L. Blaustein, S. S. Schwartz & J. E. Cohen, 1999. Species richness and the proportion of predatory animal species in temporary pools, relationship with habitat size and permanence. Ecology Letters 2: 157–166.CrossRefGoogle Scholar
  71. Stamati, F. & N. Nikolaidis, 2006. Technical Report: Hydrology and Geochemistry of the Mediterranean Temporary Ponds of W. Crete. Actions for the Conservation of the Mediterranean Temporary Ponds in Crete, Project Life-Nature 2004. Laboratory of Hydrogeochemical Engineering and Remediation of Soils, Technical University of Crete.Google Scholar
  72. Stamati, F., N. Nikolaidis, E. Dimitriou & T. Koussouris, 2008. Hydro-geochemical aspects of Mediterranean Temporary Ponds in Western Crete. Journal of Environmental Quality 37: 164–173.CrossRefPubMedGoogle Scholar
  73. Sternberg, M., M. Gutman, A. Perevolotsky & J. Kigel, 2003. Effects of grazing on soil seed bank dynamics: an approach with functional groups. Journal of Vegetation Science 14: 375–386.CrossRefGoogle Scholar
  74. Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. F. De Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. Van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortegahuerta, A. T. Peterson, O. L. Phillips & S. E. Williams, 2004. Extinction risk from climate change. Nature 427: 145–148.CrossRefPubMedGoogle Scholar
  75. Turland, N. J., L. Chilton & J. R. Press, 1993. Flora of the Cretan Area. Annotated Checklist and Atlas. HMSO, London.Google Scholar
  76. Vitousek, P. M., 1994. Beyond global warming: ecology and global change. Ecology 75: 1861–1876.CrossRefGoogle Scholar
  77. Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. M. Fromentin, O. Hoegh-Guldberg & F. Bairlein, 2002. Ecological responses to recent climate change. Nature 416: 389–395.CrossRefPubMedGoogle Scholar
  78. Warwick, N. W. M. & M. A. Brock, 2003. Plant reproduction in temporary wetlands: the effects of seasonal timing, depth, and duration of flooding. Aquatic Botany 77: 153–167.CrossRefGoogle Scholar
  79. Wellborn, G., D. Skelly & E. Werner, 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics 27: 337–363.CrossRefGoogle Scholar
  80. Williams, D. D., 1997. Temporary ponds and their invertebrate communities. Aquatic Conservation 7: 105–117.CrossRefGoogle Scholar
  81. Wilson, M. V. & A. Shmida, 1984. Measuring beta diversity with presence-absence data. Journal of Ecology 72: 1055–1064.CrossRefGoogle Scholar
  82. Winder, M. & D. E. Schindler, 2004. Climatic effects on the phenology of lake processes. Global Change Biology 10: 1844–1856.CrossRefGoogle Scholar
  83. Zacharias, I., E. Dimitriou, A. Dekker & E. Dorsman, 2007. Overview of temporary ponds in the Mediterranean region: threats, management and conservation issues. Journal of Environmental Biology 28: 1–9.PubMedGoogle Scholar
  84. Zacharias, I., A. Parasidou, E. Bergmeier, G. Kehayias, E. Dimitriou & P. Dimopoulos, 2008. A “DPSIR” model for Mediterranean temporary ponds: European, national and local scale comparisons. Annales de Limnologie-International Journal of Limnology 44: 243–256.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Dany Ghosn
    • 1
  • Ioannis N. Vogiatzakis
    • 2
    Email author
  • George Kazakis
    • 1
  • Elias Dimitriou
    • 3
  • Elias Moussoulis
    • 3
  • Valentini Maliaka
    • 4
  • Ierotheos Zacharias
    • 4
  1. 1.Department of Environmental ManagementMediterranean Agronomic Institute of ChaniaChaniaGreece
  2. 2.Centre for Agri-Environmental Research, School of Agriculture Policy and DevelopmentUniversity of ReadingReadingUK
  3. 3.Institute of Inland WatersHellenic Centre for Marine Research (HMRC)Anavissos, AttikiGreece
  4. 4.Department of Environmental Resources ManagementUniversity of IoanninaAgrinioGreece

Personalised recommendations