Hydrobiologia

, Volume 643, Issue 1, pp 71–75 | Cite as

Longevity of Daphnia magna males and females

  • Barbara Pietrzak
  • Anna Bednarska
  • Małgorzata Grzesiuk
BIOLOGY OF CLADOCERA

Abstract

In many species, males are shorter-lived than females, and, mostly anecdotally, shorter lifespan was also attributed to Daphnia males. This does not necessarily stay in accordance with the biological roles of the sexes in Daphnia. Daphnia females maximize their fitness by maximizing the number of produced offspring, which incurs costs associated with quick attainment of large body size: metabolic costs of fast growth and increased risk of predation. In contrast, Daphnia males maximize fitness by maximizing the number of fertilized females, and seem to follow the strategy that enables them to maximize the lifetime female encounter rate, which should increase with lengthening lifespan. As arguments exist both in favour and against males living longer than females, we tested for differences in physiological lifespan of Daphnia magna males and females. Although maximum observed lifespan was always equal or longer in males than in females, no statistically significant differences were found. The results indicate that Daphnia males should not be considered short-lived anymore.

Keywords

Lifespan Life history Males Females Daphnia 

References

  1. Anaya-Soto, A., S. S. S. Sarma & S. Nandini, 2003. Longevity of the freshwater anostracan Streptocephalus mackini (Crustacean: Anostraca) in relation to food (Chlorella vulgaris) concentration. Freshwater Biology 48: 432–439.CrossRefGoogle Scholar
  2. Berg, L. M., S. Pálsson & M. Lascoux, 2001. Fitness and sexual response to population density in Daphnia pulex. Freshwater Biology 46: 667–677.CrossRefGoogle Scholar
  3. Blanckenhorn, W. U., 2005. Behavioral causes and consequences of sexual size dimorphism. Ethology 111: 977–1016.CrossRefGoogle Scholar
  4. Bohrer, R. N. & W. Lampert, 1988. Simultaneous measurement of the effect of food concentration on assimilation and respiration in Daphnia magna Straus. Functional Ecology 2: 463–471.CrossRefGoogle Scholar
  5. Breukelman, J., 1932. Effect of age and sex on resistance of daphnids to mercuric chloride. Science 76: 302.CrossRefPubMedGoogle Scholar
  6. Brewer, M. C., 1998. Mating behaviours of Daphnia pulicaria, a cyclic parthenogen: comparisons with copepods. Philosophical Transactions of the Royal Society of London, Series B 353: 805–815.CrossRefGoogle Scholar
  7. De Meester, L., 1996. Local genetic differentiation and adaptation in freshwater zooplankton populations: patterns and processes. Ecoscience 3: 385–399.Google Scholar
  8. De Meester, L. & J. Vanoverbeke, 1999. An uncoupling of male and sexual egg production leads to reduced inbreeding in the cyclical parthenogen Daphnia. Proceedings of the Royal Society B 266: 2471–2477.CrossRefPubMedGoogle Scholar
  9. Dodson, S. I., 1989. The ecological role of chemical stimuli for the zooplankton: predator-induced morphology in Daphnia. Oecologia 78: 361–367.CrossRefGoogle Scholar
  10. Euent, S., R. Menzel & C. E. W. Steinberg, 2008. Gender-specific lifespan modulation in Daphnia magna by a dissolved humic substances preparation. Annals of Environmental Science 2: 7–10.Google Scholar
  11. Gems, D. & D. L. Riddle, 2000. Genetic, behavioral and environmental determinants of male longevity in Caenorhabditis elegans. Genetics 154: 1597–1610.PubMedGoogle Scholar
  12. Grebelnyi, S. D., 1996. Influence of parthenogenetic reproduction on the genotypic constitution and evolutionary success of populations and species. Hydrobiologia 320: 55–61.CrossRefGoogle Scholar
  13. Hebert, P. D. N., 1987. Genetics of Daphnia. In Peters, R. H. & R. De Bernardi (eds), Daphnia. Instituto Italiano di Idrobiologia, Pallanza, Italy: 439–460.Google Scholar
  14. Hebert, P. D. N. & R. D. Ward, 1972. Inheritance during parthenogenesis in Daphnia magna. Genetics 71: 639–642.PubMedGoogle Scholar
  15. Heinze, J. & A. Schrempf, 2008. Aging and reproduction in social insects – a mini-review. Gerontology 54: 160–167.CrossRefPubMedGoogle Scholar
  16. Hobaek, A. & P. Larsson, 1990. Sex determination in Daphnia magna. Ecology 71: 2255–2268.CrossRefGoogle Scholar
  17. Hunt, J., R. Brooks, M. D. Jennions, M. J. Smith, C. L. Bentsen & L. F. Bussiere, 2004. High-quality male field crickets invest heavily in sexual display but die young. Nature 432: 1024–1027.CrossRefPubMedGoogle Scholar
  18. Ikuno, E., T. Matsumoto, T. Okubo, S. Itoi & H. Sugita, 2008. Difference in the sensitivity to chemical compounds between female and male neonates of Daphnia magna. Environmental Toxicology 23: 570–575.CrossRefPubMedGoogle Scholar
  19. Ingle, L., T. R. Wood & A. M. Banta, 1937. A study of longevity, growth, reproduction and heart rate in Daphnia longispina as influenced by limitations in quantity of food. Journal of Experimental Zoology 76: 325–352.CrossRefGoogle Scholar
  20. Jazwinski, S. M., 1996. Longevity, genes, and aging. Science 273: 54–59.CrossRefPubMedGoogle Scholar
  21. Kawaguchi, S., L. A. Finley, S. Jarman, S. G. Candy, R. M. Ross, L. B. Quetin, V. Siegel, W. Trivelpiece, M. Naganobu & S. Nicol, 2007. Male krill grow fast and die young. Marine Ecology Progress Series 345: 199–210.CrossRefGoogle Scholar
  22. Kerfoot, W. C. & C. Peterson, 1980. Predatory copepods and Bosmina: replacement cycles and further influences of predation upon prey reproduction. Ecology 61: 417–431.CrossRefGoogle Scholar
  23. Kirkwood, T. B. L. & S. N. Austad, 2000. Why do we age? Nature 408: 233–238.CrossRefPubMedGoogle Scholar
  24. Kleiven, O. T., P. Larsson & A. Hobaek, 1992. Sexual reproduction in Daphnia magna requires three stimuli. Oikos 65: 197–206.CrossRefGoogle Scholar
  25. Lürling, M. & W. Beekman, 2006. Growth of Daphnia magna males and females fed with the cyanobacterium Microcystis aeruginosa and the green alga Scenedesmus obliquus in different proportions. Acta hydrochimica et hydrobiologica 34: 375–382.CrossRefGoogle Scholar
  26. MacArthur, J. W. & W. H. T. Baillie, 1926. Sex differences in mortality and metabolic activity in Daphnia magna. Science 64: 229–230.CrossRefPubMedGoogle Scholar
  27. MacArthur, J. W. & W. H. T. Baillie, 1929a. Metabolic activity and duration of life. I. Influence of temperature on longevity in Daphnia magna. Journal of Experimental Zoology 53: 221–242.CrossRefGoogle Scholar
  28. MacArthur, J. W. & W. H. T. Baillie, 1929b. Metabolic activity and duration of life. II. Metabolic rates and their relation to longevity in Daphnia magna. Journal of Experimental Zoology 53: 243–268.CrossRefGoogle Scholar
  29. Maklakov, A. A., S. J. Simpson, F. Zajitschek, M. D. Hall, J. Dessmann, et al., 2008. Sex-specific fitness effects of nutrient intake on reproduction and lifespan. Current Biology 18: 1062–1066.CrossRefPubMedGoogle Scholar
  30. Martínez-Jerónimo, F., R. Villaseiior, G. Rios & F. Espinosa, 1994. Effect of food type and concentration on the survival, longevity, and reproduction of Daphnia magna. Hydrobiologia 287: 207–214.Google Scholar
  31. Metcalfe, N. B. & P. Monaghan, 2001. Compensation for a bad start: grow now, pay later? Trends in Ecology and Evolution 16: 254–260.CrossRefPubMedGoogle Scholar
  32. Moore, P. G., 1981. The life histories of the amphipods Lembos websteri Bate and Corophium bonnellii Milne Edwards in kelp holdfasts. Journal of Experimental Marine Biology and Ecology 49: 1–50.CrossRefGoogle Scholar
  33. Muńoz-Mejía, G. & F. Martínez-Jerónimo, 2007. Impact of algae and their concentrations on the reproduction and longevity of cladocerans. Annales de Limnologie – International Journal of Limnology 43: 167–177.Google Scholar
  34. Munro, I. G. & R. W. G. White, 1975. Comparison of the influence of temperature on the egg development and growth of Daphnia Iongispina O.F. Miiller (Crustacea: Cladocera) from two habitats in Southern England. Oecologia (Berl.) 20: 157–165.CrossRefGoogle Scholar
  35. Peñalva-Arana, D. C., P. A. Moore, B. A. Feinberg, J. DeWall & J. R. Strickler, 2007. Studying Daphnia feeding behavior as a black box: a novel electrochemical approach. Hydrobiologia 594: 153–163.CrossRefGoogle Scholar
  36. Pietrzak, B., M. Grzesiuk & A. Bednarska, 2010. Food quantity shapes life history and survival strategies in Daphnia magna (Cladocera). Hydrobiologia. doi:10.1007/s10750-010-0135-9.
  37. Pijanowska, J. & M. Kloc, 2004. Daphnia response to predation threat involves heat-shock proteins and the actin and tubulin cytoskeleton. Genesis 38: 81–86.CrossRefPubMedGoogle Scholar
  38. Reznick, D. N., M. J. Bryant, D. Roff, C. K. Ghalambor & D. E. Ghalambor, 2004. Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 431: 1095–1099.CrossRefPubMedGoogle Scholar
  39. Siegel, V., 1987. Age and growth of Antarctic Euphausiacea (Crustacea) under natural conditions. Marine Biology 96: 483–495.CrossRefGoogle Scholar
  40. Sohal, R. S., R. J. Mockett & W. C. Orr, 2002. Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radical Biology and Medicine 33: 575–586.CrossRefPubMedGoogle Scholar
  41. Spaak, P. & M. Boersma, 2001. The influence of fish kairomones on the induction and vertical distribution of sexual individuals of the Daphnia galeata species complex. Hydrobiologia 442: 185–193.CrossRefGoogle Scholar
  42. Speakman, J. R., 2005. Body size, energy metabolism and lifespan. Journal of Experimental Biology 208: 1717–1730.CrossRefPubMedGoogle Scholar
  43. Stibor, H., 1992. Predator induced life-history shifts in a freshwater cladoceran. Oecologia 92: 162–165.CrossRefGoogle Scholar
  44. Watras, C. J., 1983. Mate location by diaptomid copepods. Journal of Plankton Research 5: 417–423.CrossRefGoogle Scholar
  45. Williams, G. C., 1957. Pleiotropy, natural selection and the evolution of senescence. Evolution 11: 398–411.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Barbara Pietrzak
    • 1
  • Anna Bednarska
    • 1
  • Małgorzata Grzesiuk
    • 1
  1. 1.Department of Hydrobiology, Faculty of BiologyUniversity of WarsawWarsawPoland

Personalised recommendations