Hydrobiologia

, Volume 643, Issue 1, pp 43–50 | Cite as

Role of melatonin in the control of depth distribution of Daphnia magna

  • Piotr Bentkowski
  • Magdalena Markowska
  • Joanna Pijanowska
BIOLOGY OF CLADOCERA

Abstract

Previous studies confirmed the presence of melatonin in Daphnia magna and demonstrated diurnal fluctuations in its concentration. It is also known that in several invertebrate species, melatonin affects locomotor activity. We tested the hypothesis that this hormone is involved in the regulation of Daphnia diel vertical migration (DVM) behaviour that is well recognized as the adaptive response to predation threat. Using ‘plankton organs’, we studied the effect of three concentrations of exogenous melatonin (10−5, 10−7, 10−9 M) on DVM of both female and male D. magna in the presence or absence of chemical cue (kairomone) of planktivorous fish. Depth distribution was measured six times a day, using infrared-sensitive closed circuit television cameras. Our results showed a significant effect of melatonin on the mean depth of experimental populations, both males and females, but only when melatonin was combined with fish kairomone. Females stayed, on average, closer to the surface than males, both responding to the presence of kairomone by descending to deeper strata. In the presence of exogenous melatonin and with the threat of predation, Daphnia stayed closer to the surface and their distribution was more variable than that of individuals, which were exposed to the kairomone alone. Approaching the surface in the presence of predation threat seems to be maladaptive. We postulate the role of melatonin as a stress signal inhibitor in molecular pathways of response to predation threat in Cladocera.

Keywords

Daphnia Depth distribution Melatonin Predation 

Notes

Acknowledgements

This research was supported by Ministry of Science and Higher Education (Poland) grants 2 P04F 036 26 and N304 094135.

References

  1. Arnoult, F. & G. Vernet, 1995. Inhibition of regeneration by melatonin in nemertean worms of the genus Lineus. Comparative Biochemistry and Physiology – Part A: Physiology 110: 319–328.CrossRefGoogle Scholar
  2. Balzer, I. & R. Hardeland, 1991. Photoperiodism and effects of indoleamines in a unicellular alga, Gonyaulax polyedra. Science 253: 795–797.CrossRefPubMedGoogle Scholar
  3. Bob, P. & P. Fedor-Freybergh, 2008. Melatonin, consciousness, and traumatic stress. Journal of Pineal Research 44: 341–347.CrossRefPubMedGoogle Scholar
  4. Bollens, S. & B. Frost, 1989. Predator-induced diet vertical migration in a planktonic copepod. Journal of Plankton Research 11: 1047–1065.CrossRefGoogle Scholar
  5. Catalá, A., A. Zvara, L. G. Puskás & K. Kitajka, 2007. Melatonin-induced gene expression changes and its preventive effects on adriamycin-induced lipid peroxidation in rat liver. Journal of Pineal Research 42: 43–49.CrossRefPubMedGoogle Scholar
  6. Dawidowicz, P., 1993. Diel vertical migration in Chaoborus flavicans: population patterns vs. individual tracks. Archiv für Hydrobiologie–Beiheft Ergebnisse der Limnologie 39: 19–28.Google Scholar
  7. Dawidowicz, P. & C. J. Loose, 1992a. Metabolic costs during predator-induced diel vertical migration of Daphnia. Limnology and Oceanography 37: 1589–1595.CrossRefGoogle Scholar
  8. Dawidowicz, P. & C. J. Loose, 1992b. Cost of swimming by Daphnia during diel vertical migration. Limnology and Oceanography 37: 665–669.CrossRefGoogle Scholar
  9. Dawidowicz, P., J. Pijanowska & K. Ciechomski, 1990. Vertical migration of Chaoborus larvae is induced by the presence of fish. Limnology and Oceanography 35: 1631–1637.Google Scholar
  10. Esposito, E., A. Iacono, C. Muià, C. Crisafulli, G. Mattace Raso, P. Bramanti, R. Meli & S. Cuzzocrea, 2008. Signal transduction pathways involved in protective effects of melatonin in C6 glioma cells. Journal of Pineal Research 44: 78–87.PubMedGoogle Scholar
  11. Gao, N. & J. Hardie, 1997. Melatonin and the pea aphid, Acyrthosiphon pisum. Journal of Insect Physiology 43: 615–620.CrossRefPubMedGoogle Scholar
  12. Gern, W. A., D. Duvall & J. M. Nervina, 1986. Melatonin: a discussion of its evolution and actions in vertebrates. American Zoologist 26: 985–996.Google Scholar
  13. Guisande, C., A. Duncan & W. Lampert, 1991. Trade-offs in Daphnia vertical migration strategies. Oecologia 87: 357–359.CrossRefGoogle Scholar
  14. Hansson, L. & S. Hylander, 2009. Size-structured risk assessments govern Daphnia migration. Proceedings of the Royal Society B: Biological Sciences 276: 331–336.CrossRefPubMedGoogle Scholar
  15. Hardeland, R. & B. Poeggeler, 2003. Non-vertebrate melatonin. Journal of Pineal Research 34: 233–241.CrossRefPubMedGoogle Scholar
  16. Kashian, D. R. & S. I. Dodson, 2004. Effects of vertebrate hormones on development and sex determination in Daphnia magna. Environmental Toxicology and Chemistry 23: 1282–1288.CrossRefPubMedGoogle Scholar
  17. Lampert, W., 1991. The dynamics of Daphnia magna in a shallow lake. Internationale Vereinigung für Theoretische und Angewandte Limnologie 24: 795–798.Google Scholar
  18. Lin, A. M., S. F. Feng, P. L. Chao & C. H. Yang, 2008. Melatonin inhibits arsenite-induced peripheral neurotoxicity. Journal of Pineal Research 46: 64–70.CrossRefPubMedGoogle Scholar
  19. Loose, C. J., 1993. Daphnia diel vertical migration behavior: response to vertebrate predator abundance. Archiv für Hydrobiologie–Beiheft Ergebnisse der Limnologie 39: 29–36.Google Scholar
  20. Markowska, M., P. Bentkowski, M. Kloc & J. Pijanowska, 2009. Presence of melatonin in Daphnia magna. Journal of Pineal Research 46: 242–244.CrossRefPubMedGoogle Scholar
  21. Neill, W. E., 1990. Induced vertical migration in copepods as a defence against invertebrate predation. Nature 345: 524–526.CrossRefGoogle Scholar
  22. Pandi-Perumal, S. R., V. Srinivasan, G. J. M. Maestroni, D. P. Cardinali, B. Poeggeler & R. Hardeland, 2006. Melatonin: nature’s most versatile biological signal? FEBS Journal 273: 2813–2838.CrossRefPubMedGoogle Scholar
  23. Pauwels, K., R. Stoks & L. de Meester, 2005. Coping with predator stress: interclonal differences in induction of heat-shock proteins in the water flea Daphnia magna. Journal of Evolutionary Biology 18: 867–872.CrossRefPubMedGoogle Scholar
  24. Pijanowska, J. & M. Kloc, 2004. Daphnia response to predation threat involves heat-shock proteins and the actin and tubulin cytoskeleton. Genesis 38: 81–86.CrossRefPubMedGoogle Scholar
  25. Reiter, R. J. & D. X. Tan, 2002. Melatonin: an antioxidant in edible plants. Annals of the New York Academy of Sciences 957: 341–344.CrossRefPubMedGoogle Scholar
  26. Reiter, R. J., D. X. Tan, W. Qi, L. C. Manchester, M. Karbownik & J. R. Calvo, 2000. Pharmacology and physiology of melatonin in the reduction of oxidative stress in vivo. Biological Signals and Receptors 9: 160–171.CrossRefPubMedGoogle Scholar
  27. Reiter, R. J., D. X. Tan, M. J. Jou, A. Korkmaz, L. C. Manchester & S. D. Paredes, 2008. Biogenic amines in the reduction of oxidative stress: melatonin and its metabolites. Neuroendocrinology Letters 29: 391–398.PubMedGoogle Scholar
  28. Ringelberg, J., 1999. The photobehaviour of Daphnia Spp. as a model to explain diel vertical migration in zooplankton. Biological Reviews 74: 397–423.CrossRefGoogle Scholar
  29. Slusarczyk, M. & E. Rygielska, 2004. Fish faeces as the primary source of chemical cues inducing fish avoidance diapause in Daphnia magna. Hydrobiologia 526: 231–234.CrossRefGoogle Scholar
  30. Tilden, A. R., M. A. Becker, L. L. Amma, J. Arciniega & A. K. McGaw, 1997a. Melatonin production in an aerobic photosynthetic bacterium: an evolutionarily early association with darkness. Journal of Pineal Research 22: 102–106.CrossRefPubMedGoogle Scholar
  31. Tilden, A. R., P. Rasmussen, R. M. Awantang, S. Furlan, J. Goldstein, M. Palsgrove & A. Sauer, 1997b. Melatonin cycle in the fiddler crab Uca pugilator and influence of melatonin on limb regeneration. Journal of Pineal Research 23: 142–147.CrossRefPubMedGoogle Scholar
  32. Tilden, A. R., R. Brauch, R. Ball, A. M. Janze, A. H. Ghaffari, C. T. Sweeney, J. C. Yurek & R. L. Cooper, 2003. Modulatory effects of melatonin on behavior, hemolymph metabolites, and neurotransmitter release in crayfish. Brain Research 992: 252–262.CrossRefPubMedGoogle Scholar
  33. Vivien-Roels, B. & P. Pévet, 1993. Melatonin: presence and formation in invertebrates. Cellular and Molecular Life Sciences 49: 642–647.CrossRefGoogle Scholar
  34. Yamano, H., Y. Watari, T. Arai & M. Takeda, 2001. Melatonin in drinking water influences a circadian rhythm of locomotor activity in the house cricket, Acheta domesticus. Journal of Insect Physiology 47: 943–949.CrossRefGoogle Scholar
  35. Yoshizawa, Y., K. Wakabayashi & T. Shinozawa, 1991. Inhibition of planarian regeneration by melatonin. Hydrobiologia 227: 31–40.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Piotr Bentkowski
    • 1
    • 3
  • Magdalena Markowska
    • 2
  • Joanna Pijanowska
    • 1
  1. 1.Faculty of Biology, Department of HydrobiologyUniversity of WarsawWarsawPoland
  2. 2.Faculty of Biology, Department of Animal PhysiologyUniversity of WarsawWarsawPoland
  3. 3.School of Environmental SciencesUniversity of East AngliaNorwichUK

Personalised recommendations