, Volume 643, Issue 1, pp 33–41 | Cite as

Depth selection and life history strategies as mutually exclusive responses to risk of fish predation in Daphnia



We tested if pelagic crustaceans of the genus Daphnia use different anti-predator defences in environmental conditions that do or do not offer deep refuge from planktivorous fish. We kept Daphnia catawba in two series of 9-m deep enclosures with and without caged cyprinid fish Phoxinus eos. In one series of enclosures, Daphnia could select its depth of residence and hide in deep dark water layers to avoid anticipated fish predation, while in another series of enclosures, a plankton net barrier fixed at 2-m depth forced them to stay in subsurface zone exposed to fish kairomones. We compared depth residence and migratory behaviour strategies with life history strategies (body size and size at first reproduction, diapause induction) in Daphnia exposed or not to fish kairomones with or without deep refuge. In deep enclosures with fish, Daphnia spent daytime hours in deep dark layers while at night, they resided closer to the water surface. Yet, no change in life history parameters of migrating individuals was observed compared to the fish-free conditions. In enclosures with fish, where the net barrier forced Daphnia to reside in subsurface zone, they produced smaller offspring, matured at smaller size and achieved lower maximum body length compared to the fish-free conditions. However, they did not produce diapausing eggs. Our experimental study supports the hypothesis that diel vertical migration behaviour with daytime residence in deep, dark water are the preferred antipredator strategy chosen by Daphnia facing anticipated fish predation over life history changes such as reduced size and low growth rate which are used when dark deep refuge is not present or accessible.


Daphnia Alternative antipredator strategies Depth selection Life history 



This study was financed through grants from the Natural Sciences and Engineering Research Council of Canada (Discovery Grant) and from the Québec Ministry of Education (FQRNT: Team Grant) to B.P.A. and by a post-doctoral fellowship to M.S. and a scholarship grant to M.G. from the GRIL (Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique, Université de Montréal). We thank Nicholas Tzouannis, Alexandra Rutherford, Malorie Gélinas and G. Méthot for field assistance. We thank Anas Ghadouani for valuable comments and English tuning on the manuscript. The study was presented as a poster at the VIIIth international symposium on Cladocera, 21–25 October 2008, Aguascalientes, Mexico.


  1. Beutler, M., K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U. P. Hansen & H. Dau, 2002. A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynthetic Research 72: 39–53.CrossRefGoogle Scholar
  2. Boersma, M., P. Spaak & L. De Meester, 1998. Predator-mediated plasticity in morphology, life history, and behaviour of Daphnia: the uncoupling of responses. American Naturalist 152: 237–248.CrossRefPubMedGoogle Scholar
  3. Cáceres, C. E. & A. J. Tessier, 2004. Incidence of diapause varies among populations of Daphnia pulicaria. Oecologia 141: 425–431.CrossRefPubMedGoogle Scholar
  4. Dawidowicz, P. & C. J. Loose, 1992. Metabolic costs during predator-induced diel vertical migration in Daphnia. Limnology and Oceanography 37: 665–669.Google Scholar
  5. De Meester, L., 1994. Life histories and habitat selection in Daphnia: divergent life histories of D. magna clones differing in phototactic behaviour. Oecologia 97: 333–341.Google Scholar
  6. De Meester, L., & J. Pijanowska, 1996. On the trait-specificity of the response of Daphnia genotypes to the chemical presence of a predator. In Lenz, P. H., D. K. Hartline, J. E. Purcell, & D. L. Macmillan (eds), Zooplankton: Sensory Ecology and Physiology. Gordon and Breach, Amsterdam: 407–417.Google Scholar
  7. De Meester, L. & L. J. Weider, 1999. Depth selection behaviour, fish kairomones, and life histories of Daphnia × hyalina × galeata hybrid clones. Limnology and Oceanography 44: 1248–1258.CrossRefGoogle Scholar
  8. De Meester, L., P. Dawidowicz, E. van Gool & C. J. Loose, 1999. Ecology and evolution of predator-induced behaviour of zooplankton: depth selection behaviour and diel vertical migration. In Tollrian, R. & D. Harvell (eds), Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, NJ: 160–176.Google Scholar
  9. Fiksen, Ø., 1997. Allocation patterns and diel vertical migration: modelling the optimal Daphnia. Ecology 78: 1446–1456.Google Scholar
  10. Gélinas, M., B. Pinel-Alloul & M. Ślusarczyk, 2007a. Formation of morphological defences in response to YOY perch and invertebrate predation in two Daphnia species coexisting in a mesotrophic lake. Hydrobiologia 594: 175–185.CrossRefGoogle Scholar
  11. Gélinas, M., B. Pinel-Alloul & M. Ślusarczyk, 2007b. Alternative antipredator responses of two coexisting Daphnia to negative size selection by YOY perch. Journal of Plankton Research 29: 775–789.CrossRefGoogle Scholar
  12. Gliwicz, Z. M., 1990. Food thresholds and body size in cladocerans. Nature 343: 638–640.CrossRefGoogle Scholar
  13. Han, B.-P. & M. Straskraba, 1998. Modelling patterns of zooplankton diel vertical migration. Journal of Plankton Research 20: 1463–1487.CrossRefGoogle Scholar
  14. Kessler, K., 2004. Distribution of Daphnia in a trade-off between food and temperature: individual habitat choice and time allocation. Freshwater Biology 49: 1220–1229.CrossRefGoogle Scholar
  15. Lampert, W., 1989. The adaptative significance of diel vertical migration of zooplankton. Functional Ecology 3: 21–27.CrossRefGoogle Scholar
  16. Lampert, W., 1993. Ultimate causes of diel vertical migration of zooplankton: new evidence for the predator avoidance hypothesis. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 39: 79–88.Google Scholar
  17. Lass, S. & P. Spaak, 2003. Chemically induced antipredator defences in plankton: a review. Hydrobiologia 491: 221–239.CrossRefGoogle Scholar
  18. Loose, C. J. & P. Dawidowicz, 1994. Trade-offs in diel vertical migration by zooplankton: the costs of predator avoidance. Ecology 75: 2255–2263.CrossRefGoogle Scholar
  19. Pijanowska, J. & G. Stolpe, 1996. Summer diapause in Daphnia as a reaction to the presence of fish. Journal of Plankton Research 18: 1407–1412.CrossRefGoogle Scholar
  20. Reichwaldt, E. S., 2008. Food quality influences habitat selection in Daphnia. Freshwater Biology 53: 872–883.CrossRefGoogle Scholar
  21. Richards, S. A., H. P. Possingham & J. Noye, 1996. Diel vertical migration: modelling light-mediated mechanisms. Journal of Plankton Research 18: 2199–2222.CrossRefGoogle Scholar
  22. Roozen, F. & M. Lürling, 2001. Behavioural response of Daphnia to olfactory cues from food, competitors and predators. Journal of Plankton Research 23: 797–808.CrossRefGoogle Scholar
  23. Sakwińska, O. & P. Dawidowicz, 2005. Life history strategy and depth selection behaviour as alternative antipredator defenses among natural Daphnia hyalina populations. Limnology and Oceanography 50: 1284–1289.CrossRefGoogle Scholar
  24. Ślusarczyk, M., 2004. Environmental plasticity of fish avoidance diapause response in Daphnia magna. Journal of Limnology 63(Suppl 1): 70–74.Google Scholar
  25. Ślusarczyk, M. & E. Rygielska, 2004. Fish faeces as the primary source of chemical cues inducing fish avoidance diapause in Daphnia magna. Hydrobiologia 526: 231–234.CrossRefGoogle Scholar
  26. Ślusarczyk, M., P. Dawidowicz & E. Rygielska, 2005. Hide, rest or die: a light-mediated diapause response to the threat of fish predation in Daphnia magna. Freshwater Biology 50: 141–146.CrossRefGoogle Scholar
  27. Ślusarczyk, M., B. Pinel-Alloul & M. Gélinas, 2006. On ultimate reasons for summer diapause of Daphnia in a permanent lake. Verhandlungen Internationale Vereinigung für Limnologie 29: 1440–1442.Google Scholar
  28. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.Google Scholar
  29. Stich, H.-B. & W. Lampert, 1981. Predator evasion as an explanation of diurnal vertical migration of zooplankton. Nature 293: 396–398.CrossRefGoogle Scholar
  30. Tessier, A. J. & M. A. Leibold, 1997. Habitat use and ecological specialization within lake Daphnia populations. Oecologia 109: 561–570.CrossRefGoogle Scholar
  31. Tollrian, R. & S. I. Dodson, 1999. Inducible defences in Cladocera: constraints, costs and multipredator environments. In Tollrian, R. & C. D. Harvell (eds), The Ecology and Evolution of Inducible Defenses. Princeton University Press, New Jersey: 177–202.Google Scholar
  32. Tollrian, R. & C. D. Harvell, 1999. Ecology and evolution of inducible defenses. Princeton University Press, Princeton, NJ.Google Scholar
  33. Vos, M., B. J. G. Flik, J. Vijverberg, J. Ringelberg & W. M. Mooij, 2002. From inducible defences to population dynamics: modelling refuge use and life history changes in Daphnia. Oikos 99: 386–396.CrossRefGoogle Scholar
  34. Williamson, C. E., R. W. Sanders, R. E. Moeller & P. L. Stutzman, 1996. Utilization of subsurface food resources for zooplankton reproduction: implications for diel vertical migration theory. Limnology and Oceanography 41: 224–233.CrossRefGoogle Scholar
  35. Winder, M., M. Boersma & P. Spaak, 2003. On the cost of vertical migration: are feeding conditions really worse at greater depth? Freshwater Biology 48: 383–393.CrossRefGoogle Scholar
  36. Wissel, B. & C. W. Ramacharan, 2003. Plasticity of vertical distribution of crustacean zooplankton in lakes with varying level of water colour. Journal of Plankton Research 25: 1047–1057.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of HydrobiologyUniversity of WarsawWarszawaPoland
  2. 2.GRIL, Département des sciences biologiquesUniversité de MontréalMontrealCanada

Personalised recommendations