, Volume 643, Issue 1, pp 107–122 | Cite as

Identifying hybridizing taxa within the Daphnia longispina species complex: a comparison of genetic methods and phenotypic approaches

  • Štepánka Dlouhá
  • Anne Thielsch
  • Robert H. S. Kraus
  • Jaromír Seda
  • Klaus Schwenk
  • Adam PetrusekEmail author


Daphnia galeata Sars, D. longispina O. F. Müller and Dcucullata Sars (Crustacea: Cladocera) are closely related species which often produce interspecific hybrids in natural populations. Several marker systems are available for taxon determination in this hybridizing complex, but their performance and reliability has not been systematically assessed. We compared results from identifications by three molecular methods. More than 1,200 individuals from 10 localities in the Czech Republic were identified as parental species or hybrids by allozyme electrophoresis and the analysis of the restriction fragment length polymorphism of the internal transcribed spacer (ITS-RFLP); over 440 of them were additionally analyzed and identified by 12 microsatellite loci. Identification by microsatellite markers corresponded well with allozyme analyses. However, consistent discrepancies between ITS-RFLP and other markers were observed in two out of 10 studied localities. Although some marker discrepancies may have been caused by occasional recent introgression, consistent deviations between ITS-RFLP and other markers suggest a long-term maintenance of introgressed alleles. These results warn against its use as a sole identification method in field studies. Additionally, we quantitatively evaluated the discriminatory power of geometric morphometric (elliptic Fourier) analysis of body shapes based on photos of over 1,300 individuals pre-classified by allozyme markers. Furthermore, a randomly selected subset of 240 individuals was independently determined from photos by several experts. Despite a tendency for morphological divergence among parental Daphnia species, some taxa (especially D. galeata, D. longispina, and their hybrids) substantially overlapped in their body shapes. This was reflected in different determination success for particular species and hybrids in discriminant analysis based on shape data as well as from photographs.


Interspecific hybridization Introgression Elliptic Fourier analysis Internal transcribed spacer Allozyme electrophoresis Microsatellites 



We thank Nora Brede for sharing her experiences with microsatellite analysis and ITS-RFLP and Moritz Salinger for laboratory assistance and helpful comments to Fourier elliptic transformation. We are grateful to Vladimír Kořínek, Jaroslav Hrbáček, Ivo Přikryl, and Jiří Macháček who kindly provided morphology-based determination of Daphnia individuals. Our study was funded by the Czech Science Foundation (project 206/04/0190), the Czech Ministry of Education (MSM0021620828), Grant Agencies of the Charles University (GA UK 114807) and Academy of Sciences of the Czech Republic (IAA600960901). We would also like thank the EuroCORES/EuroDIVERSITY project BIOPOOL (supported through the German Science Foundation (DFG) project SCHW 830/6-1 and the Czech Science Foundation project DIV/06/E007) and the Biodiversity and Climate Research Centre (BiKF), Frankfurt am Main, for additional financial support. We thank Alexey Kotov and one anonymous reviewer who provided useful comments to an earlier version of the manuscript, and David Hardekopf for language corrections.


  1. Adamowicz, S. J., A. Petrusek, J. K. Colbourne, P. D. N. Hebert & J. D. S. Witt, 2009. The scale of divergence: a phylogenetic appraisal of intercontinental allopatric speciation in a passively-dispersed freshwater zooplankton genus. Molecular Phylogenetics and Evolution 50: 423–436.CrossRefPubMedGoogle Scholar
  2. Alonso, M., 1996. Crustacea, Branchiopoda. In Ramos, M. A., J. Alba, X. Bellés, J. Gonsálbes, A. Guerra, E. Macpherson, F. Martin, J. Serrano & J. Templado (eds), Fauna Ibérica, 7. Museo Nacional de Ciencias Naturales-CSIC, Madrid.Google Scholar
  3. Anderson, E. C. & E. A. Thompson, 2002. A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160: 1217–1229.PubMedGoogle Scholar
  4. Arnheim, N., 1983. Concerted evolution of multigene families. In Nei, M. & R. K. Koehen (eds), Evolution of genes and proteins. Sinauer Associates, Sunderland: 38–61.Google Scholar
  5. Arnold, M. L., 1992. Natural hybridization as an evolutionary process. Annual Review of Ecology and Systematics 23: 237–261.CrossRefGoogle Scholar
  6. Arnold, M. L., 2006. Evolution through Genetic Exchange. Oxford University Press, Oxford.Google Scholar
  7. Belkhir, K., P. Borsa, L. Chikhi, N. Raufaste & F. Bonhomme, 1996–2004. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier.Google Scholar
  8. Benzie, J. A. H., 2005. Cladocera: the genus Daphnia (including Daphniopsis). In Dumont, H. J. F. (ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, 21. Kenobi Productions, Ghent & Backhuys Publishers, Leiden.Google Scholar
  9. Bert, T. M., K. J. McCarthy, H. Cruz-Lopez & S. Bognanowicz, 1996. Character discriminatory power, character-set congruence, and the classification of individuals from hybrid zones: an example using stone crabs (Menippe). Evolution 50: 655–671.CrossRefGoogle Scholar
  10. Billiones, R., M. Brehm, J. Klee & K. Schwenk, 2004. Genetic identification of Hyalodaphnia species and interspecific hybrids. Hydrobiologia 526: 43–53.CrossRefGoogle Scholar
  11. Boecklen, W. J. & D. J. Howard, 1997. Genetic analysis of hybrid zones: numbers of markers and power of resolution. Ecology 78: 2611–2616.CrossRefGoogle Scholar
  12. Brede, N., A. Thielsch, C. Sandrock, P. Spaak, B. Keller, B. Streit & K. Schwenk, 2006. Microsatellite markers for European Daphnia. Molecular Ecology Notes 6: 536–539.CrossRefGoogle Scholar
  13. Brede, N., C. Sandrock, D. Straile, P. Spaak, T. Jankowski, B. Streit & K. Schwenk, 2009. The impact of human-made ecological changes on the genetic architecture of Daphnia species. Proceedings of the National Academy of Sciences of the United States of America 106: 4758–4763.CrossRefPubMedGoogle Scholar
  14. Brooks, J. L., 1947. Turbulence as an environmental determinant of relative growth in Daphnia. Proceedings of the National Academy of Sciences of the United States of America 33: 141–148.CrossRefGoogle Scholar
  15. Brooks, J. L., 1965. Predation and relative helmet size in cyclomorphic Daphnia. Proceedings of the National Academy of Sciences of the United States of America 53: 119–126.CrossRefPubMedGoogle Scholar
  16. Dover, G. A., A. R. Linares, T. Bowen & J. M. Hancock, 1993. Detection and quantification of concerted evolution and molecular drive. In Zimmer, E. A. & T. J. White (eds), Molecular Evolution: Producing the Biochemical Data, Methods in Enzymology, Academic Press, San Diego, CA: 224: 525–541.Google Scholar
  17. Einsle, U., 1966. Einige Beobachtungen und Hypothesen zur Taxonomie der Gattung Daphnia. Schriften des Vereins für Geschichte des Bodensees und seiner Umgebung 84: 1–17.Google Scholar
  18. Ferson, S., F. J. Rohlf & R. K. Koehn, 1985. Measuring shape variation of two-dimensional outlines. Systematic Zoology 34: 59–68.CrossRefGoogle Scholar
  19. Flößner, D., 1993. Zur Kenntnis einiger Daphnia-Hybriden (Crustacea: Cladocera). (On the knowledge of some hybrids of Daphnia). Limnologica 23: 71–79.Google Scholar
  20. Flößner, D., 2000. Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publishers, Leiden.Google Scholar
  21. Flößner, D. & K. Kraus, 1986. On the taxonomy of the Daphnia hyalinagaleata complex (Crustacea: Cladocera). Hydrobiologia 137: 97–115.CrossRefGoogle Scholar
  22. Futuyma, D. J., 2005. Evolution. Sinauer Associates, Sunderland.Google Scholar
  23. Gießler, S., 1997. Analysis of reticulate relationships within the Daphnia longispina species complex. Allozyme phenotype and morphology. Journal of Evolutionary Biology 10: 87–105.CrossRefGoogle Scholar
  24. Gießler, S., 2001. Morphological differentiation within the Daphnia longispina group. Hydrobiologia 442: 55–66.CrossRefGoogle Scholar
  25. Gießler, S. & C. C. Englbrecht, 2009. Dynamic reticulate evolution in a Daphnia multispecies complex. Journal of Experimental Zoology Part A—Ecological Genetics and Physiology 311A: 531–549.CrossRefGoogle Scholar
  26. Gießler, S., E. Mader & K. Schwenk, 1999. Morphological evolution and genetic differentiation in Daphnia species complexes. Journal of Evolutionary Biology 12: 710–723.CrossRefGoogle Scholar
  27. Glagolev, S. M., 1995. Rod Daphnia [Genus Daphnia]. In Alexeev, V. R. (ed.), Key to Freshwater Invertebrates of Russia and Adjacent Lands, 2. Crustaceans. Zoological Institute, Russian Academy of Sciences, St. Petersburg: 48–58 (in Russian)Google Scholar
  28. Harrison, R. G., 1990. Hybrid zones: windows on evolutionary process. Oxford Surveys in Evolutionary Biology 7: 69–128.Google Scholar
  29. Hebert, P. D. N. & M. J. Beaton, 1993. Methodologies for allozyme analysis using cellulose acetate electrophoresis. A practical handbook. Helena Laboratories, Beaumont, TX.Google Scholar
  30. Hebert, P. D. N., M. J. Beaton, S. S. Schwartz & D. J. Stanton, 1989. Polyphyletic origins of asexuality in Daphnia pulex. I. Breeding-system variation and levels of clonal diversity. Evolution 43: 1004–1015.CrossRefGoogle Scholar
  31. Hobæk, A., M. Skage & K. Schwenk, 2004. Daphnia galeata × D. longispina hybrids in western Norway. Hydrobiologia 526: 55–62.CrossRefGoogle Scholar
  32. Holliday, R., 1964. A mechanism for gene conversion in fungi. Genetical Research 5: 282–304.CrossRefGoogle Scholar
  33. Hrbáček, J., 1959. Circulation of water as a main factor influencing the development of helmets in Daphnia cucullata Sars. Hydrobiologia 13: 170–185.CrossRefGoogle Scholar
  34. Hurst, G. D. D. & J. H. Werren, 2001. The role of selfish genetic elements in eukaryotic evolution. Nature Reviews Genetics 2: 597–606.CrossRefPubMedGoogle Scholar
  35. Isaev, M. 1995. EFAWin. Windows Shell for EFA. Available at
  36. Jacobs, J., 1965. Control of tissue growth in cyclomorphic Daphnia. Naturwissenschaften 52: 92–93.CrossRefGoogle Scholar
  37. Jankowski, T. & D. Straile, 2004. Allochronic differentiation among Daphnia species, hybrids and backcrosses: the importance of sexual reproduction for population dynamics and genetic architecture. Journal of Evolutionary Biology 17: 312–321.CrossRefPubMedGoogle Scholar
  38. Keller, B. & P. Spaak, 2004. Nonrandom sexual reproduction and diapausing egg production in a Daphnia hybrid species complex. Limnology and Oceanography 49: 1393–1400.CrossRefGoogle Scholar
  39. Keller, B., J. Wolinska, C. Tellenbach & P. Spaak, 2007. Reproductive isolation keeps hybridizing Daphnia species distinct. Limnology and Oceanography 52: 984–991.Google Scholar
  40. Keller, B., J. Wolinska, M. Manca & P. Spaak, 2008. Spatial, environmental and anthropogenic effects on the taxon composition of hybridizing Daphnia. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 2943–2952.CrossRefGoogle Scholar
  41. King, R. A., R. J. Gornall, C. D. Preston & J. M. Croft, 2001. Molecular confirmation of Potamogeton × bottnicus (P. pectinatus × P. vaginatus, Potamogetonaceae) in Britain. Botanical Journal of the Linnean Society 135: 67–70.Google Scholar
  42. Kraus, R. H. S., 2007. Klonale Diversität, Populationsstruktur und Hybridisierung im europäischen Daphnia longispina-Artkomplex. Diploma thesis, Goethe University, Frankfurt am Main.Google Scholar
  43. Kuhl, F. P. & C. R. Giardina, 1982. Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18: 236–258.CrossRefGoogle Scholar
  44. Laforsch, C. & R. Tollrian, 2004. Extreme helmet formation in Daphnia cucullata induced by small-scale turbulence. Journal of Plankton Research 26: 81–87.CrossRefGoogle Scholar
  45. Liao, D., 1999. Concerted evolution: molecular mechanism and biological implications. American Journal of Human Genetics 64: 24–30.CrossRefGoogle Scholar
  46. Lieder, U., 1956. Introgressive Hybridisation als Evolutionsfaktor bei den Gattungen Bosmina und Daphnia (Crustacea, Cladocera). Naturwissenschaften 43: 207.CrossRefGoogle Scholar
  47. Lieder, U., 1983. Introgression as a factor in the evolution of polytypical plankton Cladocera. Internationale Revue der gesamten Hydrobiologie und Hydrographie 68: 269–284.CrossRefGoogle Scholar
  48. Mallet, J., 2005. Hybridization as an invasion of the genome. Trends in Ecology & Evolution 20: 229–237.CrossRefGoogle Scholar
  49. Margaritora, F. G., 1985. Cladocera. Fauna d’Italia. Edizioni Calderini, Bologna: 399 pp (in Italian).Google Scholar
  50. Morita, T., H. Kubota, K. Murata, M. Nozaki, C. Delarbre, K. Willison, Y. Satta, M. Sakaizumi, N. Takahata, G. Gachelin & A. Matsushiro, 1992. Evolution of the mouse t haplotype: recent and worldwide introgression to Mus musculus. Proceedings of the National Academy of Sciences of the United States of America 89: 6851–6855.CrossRefPubMedGoogle Scholar
  51. Murti, J. R., M. Bumbulis & J. C. Schimenti, 1994. Gene conversion between unlinked sequences in the germline of mice. Genetics 137: 837–843.PubMedGoogle Scholar
  52. Nilssen, J. P., A. Hobæk, A. Petrusek & M. Skage, 2007. Restoring Daphnia lacustris G. O. Sars, 1862 (Crustacea, Anomopoda): a cryptic species in the Daphnia longispina group. Hydrobiologia 594: 5–17.CrossRefGoogle Scholar
  53. Petrusek, A., A. Hobæk, J. P. Nilssen, M. Skage, M. Černý, N. Brede & K. Schwenk, 2008a. A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda). Zoologica Scripta 37: 507–519.CrossRefGoogle Scholar
  54. Petrusek, A., J. Seda, J. Macháček, Š. Ruthová & P. Šmilauer, 2008b. Daphnia hybridisation along ecological gradients in pelagic environments: the potential for the presence of hybrid zones in plankton. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 2931–2941.CrossRefGoogle Scholar
  55. Pfenninger, M., F. Reinhardt & B. Streit, 2002. Evidence for cryptic hybridization between different evolutionary lineages of the invasive clam genus Corbicula (Veneroida, Bivalvia). Journal of Evolutionary Biology 15: 818–829.CrossRefGoogle Scholar
  56. Polanco, C., A. I. González, A. de la Fuente & G. A. Dover, 1998. Multigene family of ribosomal DNA in Drosophila melanogaster reveals contrasting patterns of homogenization for IGS and ITS spacer regions: a possible mechanism to resolve this paradox. Genetics 149: 243–256.PubMedGoogle Scholar
  57. Schwenk, K. & P. Spaak, 1995. Evolutionary and ecological consequences of interspecific hybridization in cladocerans. Experientia 51: 465–481.CrossRefGoogle Scholar
  58. Schwenk, K. & P. Spaak, 1997. Ecology and genetics of interspecific hybridization in Daphnia. In Streit. B., T. Städler & C. M. Lively (eds), Evolutionary Ecology of Freshwater Animals, Birkhäuser Verlag: 199–229.Google Scholar
  59. Schwenk, K., A. Ender & B. Streit, 1995. What can molecular markers tell us about the evolutionary history of Daphnia species complexes? Hydrobiologia 307: 1–7.CrossRefGoogle Scholar
  60. Schwenk, K., A. Sand, M. Boersma, M. Brehm, E. Mader, D. Offerhaus & P. Spaak, 1998. Genetic markers, genealogies and biogeographic patterns in the cladocera. Aquatic Ecology 32: 37–51.CrossRefGoogle Scholar
  61. Schwenk, K., D. Posada & P. D. N. Hebert, 2000. Molecular systematics of European Hyalodaphnia: the role of contemporary hybridization in ancient species. Proceedings of the Royal Society of London Series B: Biological Sciences 267: 1833–1842.CrossRefPubMedGoogle Scholar
  62. Schwenk, K., M. Bijl & S. B. J. Menken, 2001. Experimental interspecific hybridization in Daphnia. Hydrobiologia 442: 67–73.CrossRefGoogle Scholar
  63. Schwenk, K., N. Brede & B. Streit, 2008. Introduction. Extent, processes and evolutionary impact of interspecific hybridization in animals. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 2805–2811.CrossRefGoogle Scholar
  64. Seda, J., A. Petrusek, J. Macháček & P. Šmilauer, 2007. Spatial distribution of the Daphnia longispina species complex and other planktonic crustaceans in the heterogeneous environment of canyon-shaped reservoirs. Journal of Plankton Research 29: 619–628.CrossRefGoogle Scholar
  65. Skage, M., A. Hobæk, Š. Ruthová, B. Keller, A. Petrusek, J. Seda & P. Spaak, 2007. Intra-specific rDNA–ITS restriction site variation and an improved protocol to distinguish species and hybrids in the Daphnia longispina complex. Hydrobiologia 594: 19–32.CrossRefGoogle Scholar
  66. Spaak, P., 1996. Temporal changes in the genetic structure of the Daphnia species complex in Tjeukemeer, with evidence for backcrossing. Heredity 76: 539–548.CrossRefGoogle Scholar
  67. Spaak, P., 1997. Hybridization in the Daphnia galeata complex: are hybrids locally produced? Hydrobiologia 360: 127–133.CrossRefGoogle Scholar
  68. Stacey, K. A., 1994. Recombination. In Kendrew, J. & E. Lawrence (eds), The Encyclopedia of Molecular Biology. Blackwell Science, Oxford: 945–950.Google Scholar
  69. Symonds, V. V. & A. M. Lloyd, 2004. A simple and inexpensive method for producing fluorescently labeled size standard. Molecular Ecology Notes 4: 768–771.CrossRefGoogle Scholar
  70. Thielsch, A., N. Brede, A. Petrusek, L. De Meester & K. Schwenk, 2009. Contribution of cyclic parthenogenesis and colonization history to population structure in Daphnia. Molecular Ecology 18: 1616–1628.CrossRefPubMedGoogle Scholar
  71. Tollrian, R. & C. Laforsch, 2006. Linking predator kairomones and turbulence: synergistic effects and ultimate reasons for phenotypic plasticity in Daphnia cucullata. Archiv für Hydrobiologie 167: 135–146.CrossRefGoogle Scholar
  72. Winder, M., M. T. Monaghan & P. Spaak, 2001. Have human impacts changed alpine zooplankton diversity over the past 100 years? Arctic, Antarctic and Alpine Research 33: 467–475.CrossRefGoogle Scholar
  73. Wolf, H. G. & M. A. Mort, 1986. Inter-specific hybridization underlies phenotypic variability in Daphnia populations. Oecologia 68: 507–511.CrossRefGoogle Scholar
  74. Wright, T. F., P. M. Johns, J. R. Walters, A. P. Lerner, J. G. Swallow & G. S. Wilkinson, 2004. Microsatellite variation among divergent populations of stalk-eyed flies, genus Cyrtodiopsis. Genetical Research 84: 27–40.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Štepánka Dlouhá
    • 1
  • Anne Thielsch
    • 2
    • 3
  • Robert H. S. Kraus
    • 2
    • 4
  • Jaromír Seda
    • 5
  • Klaus Schwenk
    • 2
    • 3
  • Adam Petrusek
    • 1
  1. 1.Department of Ecology, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  2. 2.Department of Ecology and EvolutionGoethe University Frankfurt am MainFrankfurt am MainGermany
  3. 3.Molecular Ecology, Institute for Environmental SciencesUniversity of Koblenz-LandauLandau in der PfalzGermany
  4. 4.Resource Ecology GroupWageningen UniversityWageningenThe Netherlands
  5. 5.Biology Centre AS CR, Institute of HydrobiologyCzech Academy of SciencesČeské BudějoviceCzech Republic

Personalised recommendations