Hydrobiologia

, Volume 643, Issue 1, pp 97–106

Identifying century-old long-spined Daphnia: species replacement in a mountain lake characterised by paleogenetic methods

BIOLOGY OF CLADOCERA

Abstract

Mountain lakes often harbour morphologically or genetically unique populations of zooplankton species, including cladocerans. Daphnia lacustris Sars, predominantly found in Fennoscandia but also known from two Central European lakes in the Tatra Mountains, is one of such taxa. This Daphnia species often forms morphotypes with extremely long tailspines. Historical literature from a century ago documented similar morphs from another lake in the Tatra mountain range, presently inhabited by the phenotypically very different D. galeata. Using a paleogenetic approach (partial sequencing of the mitochondrial gene for 12S rRNA from preserved ephippial eggs in the lake sediment), we tested the hypothesis that Daphnia species composition changed in the lake due to anthropogenic disturbances, and that long-spined morphs were actually another relict population of currently extinct D. lacustris. Ephippia with extremely long spines were successfully retrieved from sediment cores. Despite being morphologically very well preserved, intact eggs were found in less than 2% of analysed ephippia. Genetic analyses, benefiting in most cases from amplification of short 12S fragments using internal primers, proved that long-spined ephippia belonged to D. longispina, which apparently coexisted with D. galeata in the mid-twentieth century. Our results confirm that paleogenetic methods are useful for studying the recent population structures of zooplankton species forming dormant egg banks but lacking reliably identifiable remains in sediments, and show that the extreme development of tailspines in mountain-lake Daphnia is associated with as-yet unclear environmental factors rather than taxonomic status.

Keywords

Paleogenetics Ephippia Internal primers Species replacement Anthropogenic changes 

References

  1. Appleby, P. G. & F. Oldfield, 1978. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to sediment. Catena 5: 1–8.CrossRefGoogle Scholar
  2. Bisset, A., J. A. E. Gibson, S. N. Jarman, K. M. Swaddling & L. Cromer, 2005. Isolation, amplification and identification of ancient copepod DNA from lake sediments. Limnology and Oceanography: Methods 3: 533–542.Google Scholar
  3. Brede, N., D. Straile, B. Streit & K. Schwenk, 2007. The contribution of differential hatching success to the fitness of species and interspecific hybrids. Hydrobiologia 594: 83–89.CrossRefGoogle Scholar
  4. Brede, N., C. Sandrock, D. Straile, P. Spaak, T. Jankowski, B. Streit & K. Schwenk, 2009. The impact of human-made ecological changes on the genetic architecture of Daphnia species. Proceedings of the National Academy of Sciences of the United States of America 106: 4758–4763.CrossRefPubMedGoogle Scholar
  5. Brendonck, L. & L. DeMeester, 2003. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491: 65–84.CrossRefGoogle Scholar
  6. Cáceres, C. E., 1998. Interspecific variation in the abundance, production, and emergence of Daphnia diapausing eggs. Ecology 79: 1699–1710.Google Scholar
  7. Correll, D. L., 1998. The role of phosphorus in the eutrophication of receiving waters: a review. Journal of Environmental Quality 27: 261–266.Google Scholar
  8. Cousyn, C., L. De Meester, J. K. Colbourne, L. Brendonck, D. Verschuren & F. Volckaert, 2001. Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes. Proceedings of the National Academy of Sciences of the United States of America 98: 6256–6260.CrossRefPubMedGoogle Scholar
  9. Decaestecker, E., S. Gaba, J. A. M. Raeymaekers, R. Stoks, L. Van Kerckhoven, D. Ebert & L. De Meester, 2007. Host–parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450: 870–873.CrossRefPubMedGoogle Scholar
  10. Duffy, M. A., L. J. Perry & C. M. Kearns, 2000. Paleogenetic evidence for a past invasion of Onondaga Lake, New York, by exotic Daphnia curvirostris using mtDNA from dormant eggs. Limnology and Oceanography 45: 1409–1414.CrossRefGoogle Scholar
  11. Faustová, M., A. Petrusek & M. Černý, 2004. Status of Daphnia resting egg banks in Bohemian Forest lakes affected by acidification. Hydrobiologia 526: 23–31.CrossRefGoogle Scholar
  12. Hairston N. G. Jr., W. Lampert, C. E. Cáceres, C. L. Holtmeier, L. J. Weider, U. Gaedke, J. M. Fischer, J. A. Fox & D. M. Post, 1999a. Rapid evolution revealed by dormant eggs. Nature 401: 446.CrossRefGoogle Scholar
  13. Hairston N. G. Jr., L. J. Perry, A. J. Bohonak, M. Q. Fellows & C. M. Kearns, 1999b. Population biology of a failed invasion: paleolimnology of Daphnia exilis in upstate New York. Limnology and Oceanography 44: 477–486.CrossRefGoogle Scholar
  14. Holčík, J. & Š. Nagy, 1986. Ichytofauna Štrbského plesa. 1. druhové zloženie. Zborník prác o Tatranskom národnom parku 27: 5–24.Google Scholar
  15. Hořická, Z., E. Stuchlík, I. Hudec, M. Černý & J. Fott, 2006. Acidification and the structure of crustacean zooplankton in mountain lakes: the Tatra Mountains (Slovakia, Poland). Biologia 61: S121–S134.CrossRefGoogle Scholar
  16. Hrbáček, J., 1987. Systematics and biogeography of Daphnia species in the northern temperate regions. In Peters, R. H. & R. de Bernardi, 1987: Daphnia. Memorie dell’Instituto Italiano di Idrobiologia 45: 37–76.Google Scholar
  17. Jersabek, C. D., A. Branceli, F. Stoch & R. Schabetsberger, 2001. Distribution and ecology of copepods in mountainous regions of the Eastern Alps. Hydrobiologia 453(454): 309–324.CrossRefGoogle Scholar
  18. Kohout, L. & J. Fott, 2006. Restoration of zooplankton in a small acidified mountain lake (Plešné Lake, Bohemian Forest) by reintroduction of two key species. Biologia 61: 477–483.CrossRefGoogle Scholar
  19. Kubíček, F., 1958. K poznaniu jarného zooplanktonu Štrbských plies. (Spring zooplankton of Štrbská lakes.) Zborník Prác o Tatranskom národnom parku 2: 63–73. (in Slovak, Russian and German summary).Google Scholar
  20. Limburg P. A. & L. J. Weider, 2002. ‘Ancient’ DNA in the resting egg bank of a microcrustacean can serve as a palaeolimnological database. Proceedings of the Royal Society of London Series B – Biological Sciences 269: 281–287.Google Scholar
  21. Lityński, A., 1913. Revision der Cladocerenfauna der Tatra-Seen. I. Teil. Daphnidae. Bulletin international de l’Académie des Sciences de Cracovie, Classe des Sciences Mathématiques et Naturelles/Sér. B 1913: 566–623.Google Scholar
  22. Lüning, J., 1995. Life-history responses to Chaoborus of spined and unspined Daphnia pulex. Journal of Plankton Research 17: 71–84.CrossRefGoogle Scholar
  23. Manca, M., P. Cammarano & T. Spagnulo, 1994. Notes on Cladocera and Copepoda from high altitude lakes in the Mount Everest Region (Nepal). Hydrobiologia 287: 225–231.CrossRefGoogle Scholar
  24. Marková, S., M. Černý, D. J. Rees & E. Stuchlík, 2006. Are they still viable? Physical conditions and abundance of Daphnia pulicaria resting eggs in sediment cores from lakes in the Tatra Mountains. Biologia 61: S135–S146.CrossRefGoogle Scholar
  25. Marková, S., F. Dufrense, D. J. Rees, M. Černý & P. Kotlík, 2007. Cryptic intercontinental colonization in water fleas Daphnia pulicaria inferred from phylogenetic analysis of mitochondrial DNA variation. Molecular Phylogenetics and Evolution 44: 42–52.CrossRefPubMedGoogle Scholar
  26. Mergeay, J., D. Verschuren & L. De Meester, 2006. Invasion of an asexual American water flea clone throughout Africa and rapid displacement of a native sibling species. Proceedings of the Royal Society B – Biological Sciences 273: 2839–2844.Google Scholar
  27. Mergeay, J., J. Vanoverbeke, D. Verschuren & L. De Meester, 2007. Extinction, recolonization, and dispersal through time in a planktonic crustacean. Ecology 88: 3032–3043.CrossRefPubMedGoogle Scholar
  28. Mergeay, J., X. Aguilera, S. Declerck, A. Petrusek, T. Huyse & L. De Meester, 2008. The genetic legacy of polyploid Bolivian Daphnia: the tropical Andes as a source for the North and South American D. pulicaria complex. Molecular Ecology 17: 1789–1800.CrossRefPubMedGoogle Scholar
  29. Mort, M. A., 1986. Chaoborus predation and the function of phenotypic variation in Daphnia. Hydrobiologia 133: 39–44.Google Scholar
  30. Mort, M. A., 1989. Cyclomorphosis in Daphnia galeata mendotae: variation and stability in phenotypic cycles. Hydrobiologia 171: 159–170.CrossRefGoogle Scholar
  31. Mužík, V., M. Zontág & P. Kráľ, 2004. Optimisation of the Štrbské pleso water ecosystem. Štúdie o Tatranskom národnom parku 7: 449–467 (in Slovak, English summary).Google Scholar
  32. Nilssen, J. P., A. Hobæk & A. Petrusek, 2007. Restoring Daphnia lacustris G.O. Sars, 1862 (Crustacea, Anomopoda): a cryptic species in the Daphnia longispina group. Hydrobiologia 594: 5–17.CrossRefGoogle Scholar
  33. Petrusek, A., M. Černý, J. Mergeay & K. Schwenk, 2007. Daphnia in the Tatra Mountain lakes: multiple colonisation and hidden species diversity revealed by molecular markers. Fundamental and Applied Limnology 169: 279–291.CrossRefGoogle Scholar
  34. Petrusek, A., A. Hobæk, J. P. Nilssen, M. Skage, M. Černý, N. Brede & K. Schwenk, 2008a. A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda). Zoologica Scripta 37: 507–519.CrossRefGoogle Scholar
  35. Petrusek, A., J. Seda, J. Macháček & P. Šmilauer, 2008b. Daphnia hybridization along ecological gradients in pelagic environments: the potential for the presence of hybrid zones in plankton. Philosophical Transaction of the Royal Society B – Biological Sciences 363: 2931–2941.CrossRefGoogle Scholar
  36. Pollard, H. G., J. K. Colbourne & W. B. Keller, 2003. Reconstruction of centuries-old Daphnia communities in a lake recovering from acidification and metal contamination. Ambio 32: 214–218.PubMedGoogle Scholar
  37. Pražáková, M., J. Veselý, J. Fott, V. Majer & J. Kopáček, 2006. The long-term succession of cladoceran fauna and palaeoclimate forcing: a 14,600-year record from Plešné Lake, the Bohemian Forest. Biologia 20: S387–S399.CrossRefGoogle Scholar
  38. Schindler, D. W., 2000. Aquatic problems caused by human activities in Banff National Park, Alberta, Canada. Ambio 29: 401–407.Google Scholar
  39. Schindler, D. W. & B. R. Parker, 2002. Biological pollutants: alien fishes in mountain lakes. Water, Air, and Soil Pollution Focus 2: 379–397.CrossRefGoogle Scholar
  40. Schwenk, K. & P. Spaak, 1995. Evolutionary and ecological consequences of interspecific hybridization in cladocerans. Experientia 51: 465–481.CrossRefGoogle Scholar
  41. Schwenk, K., A. Sand, M. Boersma, M. Brehm, E. Mader, D. Offerhaus & P. Spaak, 1998. Genetic markers, genealogies and biogeographic patterns in the Cladocera. Aquatic Ecology 32: 37–51.CrossRefGoogle Scholar
  42. Seda, J., A. Petrusek, J. Macháček & P. Šmilauer, 2007. Spatial distribution of the Daphnia longispina species complex and other planktonic crustaceans in the heterogeneous environment of canyon-shaped reservoirs. Journal of Plankton Research 29: 619–628.CrossRefGoogle Scholar
  43. Spaak, P. & M. Boersma, 1997. Tail spine length in the Daphnia galeata complex: costs and benefits of induction by fish. Aquatic Ecology 31: 89–98.CrossRefGoogle Scholar
  44. Tamura, K., J. Dudley, M. Nei & S. Kumar, 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution 24: 1596–1599.CrossRefPubMedGoogle Scholar
  45. Taylor, D. J., P. D. N. Hebert & J. K. Colbourne, 1996. Phylogenetics and evolution of the Daphnia longispina group (Crustacea) based on 12S rDNA sequence and allozyme variation. Molecular Phylogenetics and Evolution 5: 495–510.CrossRefPubMedGoogle Scholar
  46. Thompson, J. D., D. G. Higgins & T. J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.CrossRefPubMedGoogle Scholar
  47. Tollrian, R. & C. Laforsch, 2006. Linking predator kairomones and turbulence: synergistic effects and ultimate reasons for phenotypic plasticity in Daphnia cucullata. Archiv für Hydrobiologie 167: 135–146.CrossRefGoogle Scholar
  48. Vandekerkhove, J., S. Declerck, L. Brendonck, J. M. Conde-Porcuna, E. Jeppesen, L. S. Johansson & L. De Meester, 2005. Uncovering hidden species: hatching diapausing eggs for the analysis of cladoceran species richness. Limnology and Oceanography: Methods 3: 399–407.Google Scholar
  49. Vekhoff, N. V., 1997. Large branchiopod Crustacea (Anostraca, Notostraca, Spinicaudata) of the Barents Region of Russia. Hydrobiologia 359: 69–74.CrossRefGoogle Scholar
  50. Weider, L. J., W. Lampert, M. Wessels, J. K. Colbourne & P. Limburg, 1997. Long-term genetic shifts in a microcrustacean egg bank associated with antropogenic changes in the Lake Constance ecosystem. Proceedings of the Royal Society of London Series B – Biological Sciences 264: 1613–1618.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Ecology, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  2. 2.Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of ScienceCharles University in PraguePrague 2Czech Republic

Personalised recommendations