Hydrobiologia

, Volume 650, Issue 1, pp 117–131 | Cite as

Mitochondrial DNA variation in Arctic charr (Salvelinus alpinus (L.)) morphs from Loch Rannoch, Scotland: evidence for allopatric and peripatric divergence

CHARR

Abstract

Three ecologically and morphologically distinct forms of Arctic charr (Salvelinus alpinus L.) have been identified in Loch Rannoch, Scotland, whose evolutionary status and origins are incompletely understood. A study was made of restriction fragment length polymorphism (RFLPs) detected variation in the D-loop, ND1 and cytochrome b regions of the mitochondrial genome, encompassing >3500 bp. Eight RFLP haplotypes were identified that clustered into three distinct clans based on restriction differences and into four clans based on sequence differences. Significant differences in RFLP frequencies were found among all morph groups. The pelagic morph was highly divergent from the two benthic forms, with the benthic forms having variants from only one genetic clan while the pelagic was dominated by a single variant from another clan. The relative divergence observed among benthic and pelagic forms is ~10 fold greater when nucleotide divergence among the haplotypes, as well as haplotype frequency differences, is taken into account. Sequence divergence between haplotypes in the two main clans is of a similar order to that between haplotypes in these clans and a charr from North America. In contrast, divergence among the two benthic morphs relates entirely to differences in haplotype frequencies. The study confirms the genetic distinctiveness of the pelagic and benthic forms as well as of the two benthic forms. It strongly supports previous evidence that the genetic divergence between the pelagic and benthic populations is allopatric in origin. Additionally, the results strongly suggest that the two benthic populations have undergone peripatric divergence through the sequential colonisation of the two basins by one lineage, followed by their spatial separation and reproductive isolation.

Keywords

Salmonids Sympatric morphs Speciation mtDNA Genetics Populations 

Notes

Acknowledgements

This study was made possible by funding from the Scottish Government. The authors would also like to thank the Rannoch Conservation Association, and in particular A. Boyd and R. Legate, for permission to net the loch and support of this study.

References

  1. Adams, C. E. & F. A. Huntingford, 2002. Inherited differences in head allometry in polymorphic Arctic charr from Loch Rannoch, Scotland. Journal of Fish Biology 60: 515–520.CrossRefGoogle Scholar
  2. Adams, C. E. & F. A. Huntingford, 2004. Incipient speciation driven by phenotypic plasticity? Evidence from sympatric populations of Arctic charr. Biological Journal of the Linnaean Society 81: 611–618.CrossRefGoogle Scholar
  3. Adams, C. E., F. A. Huntingford, D. Fraser, R. B. Greer, C. M. Askew & A. F. Walker, 1998. Trophic polymorphism amongst Arctic charr from Loch Rannoch, Scotland. Journal of Fish Biology 52: 1259–1272.CrossRefGoogle Scholar
  4. Adams, C., D. Fraser, I. McCarthy, S. Shields, S. Waldron & G. Alexander, 2003. Stable isotope analysis reveals ecological segregation in a bimodal size polymorphism in Arctic charr from Loch Tay, Scotland. Journal of Fish Biology 62: 474–481.CrossRefGoogle Scholar
  5. Alexander, G. D. & C. E. Adams, 2000. The phenotypic diversity of Arctic charr, Salvelinus alpinus, Salmonidae in Scotland and Ireland. Aqua Journal of Ichthyology and Aquatic Biology 4: 77–88.Google Scholar
  6. Avise, J. C., 2004. Molecular Markers, Natural History and Evolution, 2nd ed. Sinauer Press, Sunderland, MA.Google Scholar
  7. Bermingham, E., S. S. McCafferty & A. P. Martin, 1997. Fish biogeography and molecular clocks: perspectives from the Panamanian Isthmus, Ch. 8. In Kocher, T. D. & C. A. Stepien (eds), Molecular Systematics of Fishes. Academic Press, New York.Google Scholar
  8. Brunner, P. C., M. R. Douglas, A. Osinov, C. C. Wilson & L. Bernatchez, 2001. Holarctic phylogeography of Arctic charr (Salvelinus alpinus L.) inferred from mitochondrial DNA sequences. Evolution 55: 573–586.CrossRefPubMedGoogle Scholar
  9. Clark, C. D., D. J. A. Evans, A. Khatwa, T. Bradwell, C. J. Jordan, S. H. Marsh, W. A. Mitchell & M. D. Bateman, 2004. Map and GIS database of glacial landforms and features related to the last British Ice Sheet. Boreas 33: 359–375.CrossRefGoogle Scholar
  10. Cronin, M. A., W. J. Spearman, R. L. Wilmot, J. C. Patton & J. W. Bickham, 1993. Mitochondrial DNA variation in chinook (Oncorhynchus tshawytscha) and chum salmon (O. keta) detected by restriction enzyme analysis of polymerase chain reaction (PCR) products. Canadian Journal of Fisheries and Aquatic Sciences 50: 708–715.CrossRefGoogle Scholar
  11. Danzmann, R. G., M. M. Ferguson, S. Skúlason, S. S. Snorrason & D. L. G. Noakes, 1991. Mitochondrial DNA diversity among four sympatric morphs of Arctic charr. Salvelinus alpinus (L.), from Thingvallavatn, Iceland. Journal of Fish Biology 39: 617–774.CrossRefGoogle Scholar
  12. Doiron, S., L. Bernatchez & P. U. Blier, 2002. A comparative mitogenomic analysis of the potential adaptive value of Arctic charr mtDNA introgression in brook charr populations (Salvelinus fontinalis Mitchill). Journal of Molecular Biology and Evolution 19: 1902–1909.Google Scholar
  13. Excoffier, L., G. Laval & S. Schneider, 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.PubMedGoogle Scholar
  14. Ferguson, A. & J. B. Taggart, 1991. Genetic differentiation among the sympatric brown trout (Salmo trutta) populations of Lough Melvin, Ireland. Biological Journal of the Linnaean Society 43: 221–237.CrossRefGoogle Scholar
  15. FitzSimmons, N. N., C. J. Limpus, J. A. Norman, A. R. Goldizen, J. D. Miller & C. Moritz, 1997. Philopatry of male marine turtles inferred from mitochondrial markers. Proceedings of the National Academy of Sciences 94: 8912–8917.CrossRefGoogle Scholar
  16. Fraser, D., C. E. Adams & F. A. Huntingford, 1999. Trophic polymorphism among Arctic charr Salvelinus alpinus from Loch Ericht, Scotland. Ecology of Freshwater Fish 7: 184–191.CrossRefGoogle Scholar
  17. Gardner, A. S., A. F. Walker & R. B. Greer, 1988. Morphometric analysis of two ecologically distinct forms of Arctic charr (Salvelinus alpinus L.) in Loch Rannoch, Scotland. Journal of Fish Biology 32: 901–910.CrossRefGoogle Scholar
  18. Gíslason, D., M. Ferguson, S. Skúlason & S. S. Snorrason, 1999. Rapid and coupled phenotypic and genetic divergence in Icelandic Arctic charr (Salvelinus alpinus). Canadian Journal of Fisheries and Aquatic Sciences 56: 2229–2234.CrossRefGoogle Scholar
  19. Golledge, N. R., A. Hubbard & D. E. Sugden, 2008. High-resolution numerical simulation of Younger Dryas glaciation in Scotland. Quaternary Science Reviews 27: 888–904.CrossRefGoogle Scholar
  20. Goudet, J., 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of Heredity 86: 485–486.Google Scholar
  21. Greer, R. B., 1991. Arctic charr in lochs of the Grampian Highlands of Scotland. In Hammar, J. (ed.), Proceedings of the Sixth ISACF Workshop on Arctic char, 1990. ISACF Information Series 5, Institute of Freshwater Research, Drottningholm: 61–68.Google Scholar
  22. Hall, A. & D. Jarman, 2004. Quaternary landscape evolution—plateau dissection by glacial breaching. In Lukas, S., J. W. Merritt & W. A. Mitchell (eds), The Quaternary of the Central Grampian Highlands. Quaternary Research Association, London: 26–40.Google Scholar
  23. Hammar, J., 1984. Ecological characters of different combinations of sympatric populations of Arctic charr in Sweden. In Johnson, L. & B. L. Burns (eds), Biology of the Arctic charr. Proceedings of the International Symposium on Arctic charr, Winnipeg, Manitoba, May 1981. Univ. Manitoba Press, Winnipeg: 35–263.Google Scholar
  24. Hammar, J., 1991. Speciation processes in the High Arctic: hardly as simple as the environment might suggest. In Hammar, J. (ed.), Proceedings of the Sixth ISACF Workshop on Arctic char, 1990. ISACF Information Series 5, Institute of Freshwater Research, Drottningholm: 73–88.Google Scholar
  25. Hammar, J. & O. Filipsson, 1985. Ecological testfishing with the Lundgren gillnets of multiple mesh size: the Drottningholm technique modified for Newfoundland Arctic char populations. Report, Institute of Freshwater Research, Drottningholm 62: 12–35.Google Scholar
  26. Hartley, S. E., C. McGowan, R. B. Greer & A. F. Walker, 1992. The genetics of sympatric Arctic charr (Salvelinus alpinus L.) populations from Loch Rannoch, Scotland. Journal of Fish Biology 41: 1021–1031.CrossRefGoogle Scholar
  27. Hartley, S. E., A. A. Bell & J. B. Taggart, 1995. DNA fingerprinting in Arctic charr, Salvelinus alpinus (L.)—preliminary analyses with multi- and single-locus minisatellite probes. Nordic Journal of Freshwater Research 71: 265–274.Google Scholar
  28. Hendry, A. P., V. Castric, M. T. Kinnison & T. P. Quinn, 2004. The evolution of philopatry and dispersal: homing versus straying in salmonids. In Hendry, A. P. & S. C. Stearns (eds.), Evolution Illuminated: Salmon and Their Relatives. Oxford University Press, Oxford, UK: 52–91.Google Scholar
  29. Henricson, L. & L. Nyman. 1976, The ecological and genetical segregation of two sympatric species of dwarfed char (Salvelinus alpinus (L.) species complex). Report, Institute of Freshwater Research, Drottningholm 55: 15–37.Google Scholar
  30. Hurst, C. D., S. E. Bartlett, W. S. Davidson & I. J. Bruce, 1999. The complete mitochondrial DNA sequence of the Atlantic salmon, Salmo salar. Gene 239: 237–242.CrossRefPubMedGoogle Scholar
  31. Jonsson, B. & N. Jonsson, 2001. Polymorphism and speciation in Arctic charr. Journal of Fish Biology 58: 605–638.CrossRefGoogle Scholar
  32. Klemetsen, A. & P. E. Grotnes, 1975. Food and habitat segregation by two sympatric Arctic char populations. Verhandlungen der Internationalen Vereinigung für Limnologie 19: 2521–2528.Google Scholar
  33. Kottelat, M. & J. Freyhof, 2007. Handbook of European Freshwater Fishes. Publications Kottelat, Switzerland.Google Scholar
  34. Maitland, P. S., 2007. Scotland’s Freshwater Fish: Ecology, Conservation and Folklore. Trafford Publishing, Oxford, UK.Google Scholar
  35. Maitland, P. S., R. B. Greer, R. N. Campbell & G. F. Friend, 1984. The status and biology of Arctic charr, Salvelinus alpinus (L.) in Scotland. In Johnson, L. & B. L. Burns (eds), Biology of the Arctic charr. Proceedings of the International Symposium on Arctic charr, Winnipeg, Manitoba, May 1981. Univ. Manitoba Press, Winnipeg: 193–215.Google Scholar
  36. Mayr, E., 1963. Animal Species and Evolution. Harvard University Press, Cambridge, MA.Google Scholar
  37. McElroy, D., P. Moran, E. Bermingham & I. Kornfield, 1992. REAP: an integrated environment for the manipulation and phylogenetic analysis of restriction data. Journal of Heredity 83: 157–158.PubMedGoogle Scholar
  38. McKay, S. J., R. H. Devlin & M. J. Smith, 1996. Phylogeny of Pacific salmon and trout based on growth hormone type-2 and mitochondrial NADH dehydrogenase subunit 3 sequences. Canadian Journal of Fisheries and Aquatic Sciences 53: 1165–1176.CrossRefGoogle Scholar
  39. Murray, J. & L. Pullar, 1910. Bathymetrical Survey of the Scottish Fresh-Water Lochs. The Challenger Office, Edinburgh.Google Scholar
  40. Nei, M., F. Tajima & Y. Tateno, 1983. Accuracy of estimated phylogenetic trees from molecular data. Journal of Molecular Evolution 19: 153–170.CrossRefPubMedGoogle Scholar
  41. Nilsson, N.-A. & O. Filipsson, 1971. Characteristics of two discrete populations of Arctic char (Salvelinus alpinus) in a north Swedish lake. Report, Institute of Freshwater Research, Drottningholm 51: 90–108.Google Scholar
  42. Nordeng, H., 1983. Solution to the ‘charr problem’ based on Arctic char (Salvelinus alpinus) in Norway. Canadian Journal of Fisheries and Aquatic Sciences 40: 1372–1387.CrossRefGoogle Scholar
  43. Nyman, L., J. Hammar & R. Gydemo, 1981. The systematics and biology of land-locked populations of Arctic char from northern Europe. Report, Institute of Freshwater Research, Drottningholm 59: 128–141.Google Scholar
  44. Ota, T., 1993. DISPAN: Genetic Distance and Phylogenetics Analysis. Pennsylvania State University, University Park, PA.Google Scholar
  45. Palumbi, R., 1996. Nucleica acids II: the polymerase chain reaction. In Hillis, D. M., C. Moritz & B. K. Mable (eds), Molecular Systematics, 2nd ed. Sinauer Associates, Sunderland, MA.Google Scholar
  46. Pritchard, J. K., M. Stephens & P. J. Donnelly, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.PubMedGoogle Scholar
  47. Rundell, R. J. & T. D. Price, 2009. Adaptive radiation, nonadaptive radiation, ecological specification and nonecological speciation. Trends in Ecology and Evolution 24: 394–399.CrossRefPubMedGoogle Scholar
  48. Sandlund, O. T., K. Gunnarsson, P. Jónasson, B. Jonsson, T. Lindem, K. P. Magnússon, H. J. Malmquist, H. Sihurjónsdóttir, S. Skúlason & S. S. Snorrason, 1992. The Arctic charr Salvelinus alpinus in Thingvallavatn. Oikos 64: 305–351.CrossRefGoogle Scholar
  49. Snorrason, S. S., S. Skúlason, B. Jonsson, H. J. Malmquist, P. M. Jónasson, O. T. Sandlund & T. Linden, 1994. Trophic specialization in Arctic charr Salvelinus alpinus (Pisces; Salmonidae): morphological divergence and ontogenetic niche shifts. Biological Journal of the Linnaean Society 52: 1–18.CrossRefGoogle Scholar
  50. Svärdson, G., 1979. Speciation of Scandinavian Coregonus. Report, Institute of Freshwater Research, Drottningholm 57: 95 p.Google Scholar
  51. Tamura, K., M. Nei & S. Kumar, 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA) 101: 11030–11035.CrossRefGoogle Scholar
  52. Tamura, K., J. Dudley, M. Nei & S. Kumar, 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596–1599.CrossRefPubMedGoogle Scholar
  53. Verspoor, E. & L. C. Cole, 1989. Genetically distinct sympatric populations of resident and anadromous Atlantic salom Salmo salar. Canadian Journal of Zoology 67: 1453–1461.CrossRefGoogle Scholar
  54. Verspoor, E. & L. J. Cole, 2005. Genetic evidence for lacustrine spawning of the non-anadromous Atlantic salmon population of Little Gull Lake, Newfoundland. Journal of Fish Biology 67(Supplement A): 200–205.CrossRefGoogle Scholar
  55. Volpe, J. P. & M. M. Ferguson, 1996. Molecular genetic examination of the polymorphic Arctic charr Salvelinus alpinus of Thingvallavatn, Iceland. Molecular Ecology 5: 763–772.CrossRefPubMedGoogle Scholar
  56. Walker, A. F., R. B. Greer & A. S. Gardner, 1988. Two ecologically distinct forms of Arctic charr (Salvelinus alpinus L.) in Loch Rannoch, Scotland. Biological Conservation 43: 43–61.CrossRefGoogle Scholar
  57. Whitlock, M. C. & D. E. McCauley, 1999. Indirect measures of gene flow and migration: F ST not equal to 1/(4 nm + 1). Heredity 82: 117–125.CrossRefPubMedGoogle Scholar
  58. Wilkinson, M., J. O. McInerney, R. P. Hirt, P. G. Foster & T. M. Embley, 2007. Of clades and clans: terms for phylogentic relationships in unrooted trees. Trends in Ecology and Evolution 22: 114–115.CrossRefPubMedGoogle Scholar
  59. Wilson, A. J., D. Gíslason, S. Skúlason, S. S. Snorrason, C. E. Adams, G. Alexander, R. G. Danzmann & M. M. Ferguson, 2004. Population genetic structure of Arctic charr, Salvelinus alpinus, from northwest Europe on large and small spatial scales. Molecular Ecology 13: 1129–1142.CrossRefPubMedGoogle Scholar
  60. Wright, S., 1931. Evolution in Mendelian populations. Genetics 16: 97–159.PubMedGoogle Scholar

Copyright information

© Crown Copyright Marine Scotland 2010

Authors and Affiliations

  1. 1.Marine Scotland, Freshwater LaboratoryPitlochryScotland, UK
  2. 2.Natural Resources Scotland, The Armoury HouseBlair AthollScotland, UK
  3. 3.Institute of Freshwater ResearchDrottningholmSweden

Personalised recommendations