Advertisement

Hydrobiologia

, Volume 641, Issue 1, pp 275–286 | Cite as

Feeding habits of the Magellan skate: effects of sex, maturity stage, and body size on diet

  • Santiago A. BarbiniEmail author
  • Lorena B. Scenna
  • Daniel E. Figueroa
  • María B. Cousseau
  • Juan M. Díaz de Astarloa
Primary research paper

Abstract

The aim of this study was to evaluate the effects of sex, maturity stage, and body size on the diet of the Magellan skate, Bathyraja magellanica, in the Southwest Atlantic off Argentina, by examining stomach contents using a multiple hypothesis modeling approach. Relationships between the number of prey and sex, maturity stage, and total length (TL) were assessed by built generalized linear models (GLM). Furthermore, we tested whether there was a threshold size at which B. magellanica started or quit consuming a given prey. The overall diet of B. magellanica was mainly consisted of teleosts, followed by amphipods, isopods, and decapods. Ontogenetic diet shifts were independent of sex and maturity stage. However, discrete shifts in diet with TL were found, with individuals larger than 554 and 623 mm TL ceasing to consume amphipods and isopods, respectively. The consumption of teleosts progressively increased with increasing predator size. Likewise, ontogenetic shifts in foraging behavior were also observed with smaller individuals showing specialization on amphipods with larger specimens consuming teleosts. These results confirm that ontogenetic shifts in diet of B. magellanica are more a function of predator size rather than any other life-history traits. We propose that these food shifts are probably related to morphological limitations and abilities associated with feeding habits of skate, so when specimens of B. magellanica reach an optimum body size, they may have access to higher quality trophic resources. Our results suggest that evaluating the importance of life-history stages on the feeding habits of a species is essential for understanding how that species exploits food resources, which, in turn, is an important factor in developing a suitable plan of marine ecosystem conservation.

Keywords

Rajidae Diet composition Feeding strategy Ontogenetic shifts Predator size Bathyraja magellanica 

Notes

Acknowledgments

We thank the Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP) for specimens collected from different research cruises. We are also grateful to Dr. M. A. Scelzo (Universidad Nacional de Mar del Plata), Dra. G. Alonso (Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”) and Dra. N. Brunetti (INIDEP) for their help in identifying crabs, amphipods, and squids, respectively. T. Munroe and two reviewers made valuable comments and English grammar corrections which improved greatly the manuscript. This research was supported by the ECORAYA program financed by the Volkswagen Stiftung (project number 03F0383A) and Universidad Nacional de Mar del Plata (EXA 15/E98 and EXA 342/06). S. A. Barbini and L. B. Scenna were supported by scholarships from CIC and CONICET, respectively.

References

  1. Amundsen, P. A., H. M. Gabler & F. J. Staldvik, 1996. A new approach to graphical analysis of feeding strategy from stomach contents data-modification of the Costello (1990) method. Journal of Fish Biology 48: 607–614.Google Scholar
  2. Bastida, R. O. & M. R. Torti, 1973. Los isópodos Serolidae en la Argentina. Clave para su reconocimiento. Physis 32: 19–46.Google Scholar
  3. Belleggia, M., E. Mabragaña, D. E. Figueroa, L. B. Scenna, S. A. Barbini & J. M. Díaz de Astarloa, 2008. Food habits of the broad nose skate, Bathyraja brachyurops (Chondrichthyes, Rajidae), in the south-west Atlantic. Scientia Marina 72: 701–710.CrossRefGoogle Scholar
  4. Bizzarro, J. J., H. J. Robinson, C. S. Rinewalt & D. A. Ebert, 2007. Comparative feeding ecology of four sympatric skate species off central California, USA. Environmental Biology of Fishes 80: 197–220.CrossRefGoogle Scholar
  5. Boschi, E. E., C. E. Fischbach & M. L. Dorio, 1992. Catálogo ilustrado de los crustáceos estomatópodos y decápodos marinos de Argentina. Frente Marítimo 10: 7–94.Google Scholar
  6. Brickle, P., V. Laptikhovsky, J. Pompert & A. Bishop, 2003. Ontogenetic changes in the feeding habits and dietary overlap between three abundant rajid species on the Falkland Island’ shelf. Journal of the Marine Biological Association of the United Kingdom 93: 1119–1125.CrossRefGoogle Scholar
  7. Caillet, G. M. & K. J. Goldman, 2004. Age determination and validation in chondrichthyans fishes. In Carrier, J. C., J. A. Musick & M. R. Heithaus (eds), Biology of Sharks and Their Relatives. CRC Press, Boca Raton: 399–447.Google Scholar
  8. Carroll, A. M., P. C. Wainwright, S. H. Huskey, D. C. Collar & R. G. Turingan, 2004. Morphology predicts suction feeding performance in centrarchid fishes. Journal of Experimental Biology 207: 3873–3881.CrossRefPubMedGoogle Scholar
  9. Cortés, E., 1997. A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Canadian Journal of Fisheries and Aquatic Sciences 54: 726–738.CrossRefGoogle Scholar
  10. Cousseau, M. B. & R. G. Perrotta, 2000. Peces marinos de Argentina. Biología, distribución, pesca. Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata.Google Scholar
  11. Cousseau, M. B., D. E. Figueroa, J. M. Díaz de Astarloa, E. Mabragaña & L. O. Lucifora, 2007. Rayas, chuchos y otros batoideos del Atlántico Sudoccidental (34°S-55°S). Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata.Google Scholar
  12. Crawley, M. J., 2005. Statistics: an introduction using R. Wiley, Chichester.Google Scholar
  13. Ebert, D. A., 1994. Diet of the sixgill shark Hexanchus griseus off southern Africa. South African Journal of Marine Science 14: 213–218.Google Scholar
  14. Ebert, D. A., 2002. Ontogenetic changes in the diet of the sevengill shark (Notorynchus cepedianus). Marine and Freshwater Research 53: 517–523.CrossRefGoogle Scholar
  15. Ebert, D. A. & J. J. Bizzarro, 2007. Standardized diet compositions and trophic levels of skates (Chondrichthyes, Rajiformes, Rajoidei). Environmental Biology of Fishes 80: 221–237.CrossRefGoogle Scholar
  16. Ferry, L. A. & G. M. Caillet, 1996. Sample size and data analysis: are we characterizing and comparing diet properly? In MacKinlay, D. & K. Shearer (eds), Feeding ecology and nutrition in fish. Proceedings of the Symposium on the Feeding Ecology and Nutrition in Fish. International Congress on the Biology of Fishes. American Fisheries Society, San Francisco: 71–80.Google Scholar
  17. Franklin, A. B., T. M. Shenk, D. R. Anderson & K. P. Burnham, 2001. Statistical model selection: an alternative to null hypothesis testing. In Shenk, T. M. & A. B. Franklin (eds), Modeling In Natural Resource Management: Development, Interpretation, and Application. Island Press, Washington: 75–90.Google Scholar
  18. Guerrero, R. A. & A. R. Piola, 1997. Masas de agua en la plataforma continental. In Boschi, E. E. (ed.), El Mar Argentino y sus recursos pesqueros. Tomo 1. Antecedentes históricos de las exploraciones en el mar y las características ambientales. Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata: 107–118.Google Scholar
  19. Hernandez, L. P. & P. J. Motta, 1997. Trophic consequences of differential performance: ontogeny of oral jaw crushing performance in the sheepshead, Archosargus probatocephalus (Teleostei: Sparidae). Journal of Zoology (London) 243: 737–756.CrossRefGoogle Scholar
  20. Herrel, A. & A. C. Gibb, 2006. Ontogeny of performance in vertebrates. Physiological and Biochemical Zoology 79: 1–6.CrossRefPubMedGoogle Scholar
  21. Higham, T. E., 2007. The integration of locomotion and prey capture in vertebrates: morphology, behavior, and performance. Integrative and Comparative Biology 47: 82–95.CrossRefGoogle Scholar
  22. Hubert, D. R. & P. J. Motta, 2004. Comparative analysis of methods for determining bite force in the spiny dogfish Squalus acanthias. Journal of Experimental Zoology 301: 26–37.CrossRefGoogle Scholar
  23. Kikolsky, G. V., 1963. The Ecology of Fishes. Academic Press, London.Google Scholar
  24. Lucifora, L. O., J. L. Valero, C. S. Bremec & M. L. Lasta, 2000. Feeding habits and prey selection by the skate Dipturus chilensis (Elasmobranchii: Rajidae) from the south-western Atlantic. Journal of the Marine Biological Association of the United Kingdom 80: 953–954.CrossRefGoogle Scholar
  25. Lucifora, L. O., R. C. Menni & A. H. Escalante, 2005. Reproduction, abundance and feeding habits of the broadnose sevengill shark Notorynchus cepedianus in north Patagonia, Argentina. Marine Ecology Progress Series 289: 237–244.CrossRefGoogle Scholar
  26. Lucifora, L. O., V. B. García, R. C. Menni & A. H. Escalante, 2006. Food habits, selectivity, and foraging modes of the school shark, Galeorhinus galeus. Marine Ecology Progress Series 315: 259–270.CrossRefGoogle Scholar
  27. Lucifora, L. O., V. B. García, R. C. Menni, A. H. Escalante & N. M. Hozbor, 2009. Effects of body size, age and maturity stage on diet in a large shark: ecological and applied implications. Ecological Research 24: 109–118.CrossRefGoogle Scholar
  28. Mabragaña, E., D. A. Giberto & C. S. Bremec, 2005. Feeding ecology of Bathyraja macloviana (Rajiformes: Arhynchobatidae): a polychaete-feeding skate from the South-west Atlantic. Scientia Marina 69: 405–413.CrossRefGoogle Scholar
  29. Marshall, A. D., P. M. Kyne & M. B. Bennett, 2008. Comparing the diet of two sympatric urolophid elasmobranchs (Trygonoptera testacea Müller & Henle and Urolophus kapalensis Yearsley & Last): evidence of ontogenetic shifts and possible resource partitioning. Journal of Fish Biology 72: 883–898.CrossRefGoogle Scholar
  30. McCormack, C., J. Lamilla, M. J. San Martín & M. F. W. Stehmann, 2007. Red List of Threatened Species [available on internet at http://www.iucnredlist.org/, Accessed 13 February 2009].
  31. McEachran, J. D. & K. A. Dunn, 1998. Phylogenetic analysis of skates, a morphologically conservative clade of elasmobranchs (Chondrichthyes: Rajidae). Copeia 1998: 271–290.CrossRefGoogle Scholar
  32. Menni, R. C. & M. F. W. Stehmann, 2000. Distribution, environment and biology of batoid fishes off Argentina, Uruguay and Brazil. A review. Revista del Museo Argentino de Ciencias Naturales Bernardino Rivadavia 2: 69–109.Google Scholar
  33. Moyle, P. B. & J. J. Cech, 2004. Fishes: An Introduction to Ichthyology, 5th ed. Prentice Hall, New Jersey.Google Scholar
  34. Muto, E. Y., L. S. H. Soares & R. Goiten, 2001. Food resource utilization of the skates Rioraja agassizi and Psammobatis extenta on the continental shelf off Ubatuba, south-eastern Brasil. Revista Brasileira de Biologia 61: 217–238.CrossRefGoogle Scholar
  35. Orlov, A. M., 1998. The diets and feeding habits of some deep-water benthic skates (Rajidae) in the Pacific waters off the Northern Kuril Islands and Southeastern Kamchatka. Alaska Fishery Research Bulletin 5: 1–17.Google Scholar
  36. Parker, G., M. C. Paterlini & R. A. Violante, 1997. El fondo marino. In Boschi, E. E. (ed.), El Mar Argentino y sus recursos pesqueros. Tomo 1. Antecedentes históricos de las exploraciones en el mar y las características ambientales. Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata: 65–87.Google Scholar
  37. Pequeño, G. & J. Lamilla, 1985. Estudio sobre una colección de rayas del sur de Chile (Chondrichthyes, Rajidae). Revista de Biologia Marina 21: 225–271.Google Scholar
  38. Pinkas, L. M., S. Oliphant & I. L. K. Iverson, 1971. Food habits of albacore, bluefin tuna and bonito in Californian waters. California Fish and Game 152: 1–105.Google Scholar
  39. Platell, M. E. & I. C. Potter, 2001. Partitioning of food resource amongst 18 abundant benthic carnivorous fish species in marine waters on the lower west coast of Australia. Journal of Experimental Marine Biology and Ecology 261: 31–54.CrossRefPubMedGoogle Scholar
  40. Priede, I. G., R. Froese, D. M. Bailey, O. A. Bergstad, M. A. Collins, J. E. Dyb, C. Henriques, E. G. Jones & N. King, 2006. The absence of sharks from abyssal regions of the world’s oceans. Proceedings of the Royal Society B 273: 1435–1441.CrossRefPubMedGoogle Scholar
  41. Robinson, H. J., G. M. Cailliet & D. A. Ebert, 2007. Food habits of the longnose skate, Raja rhina (Jordan and Gilbert, 1880), in central California waters. Environmental Biology of Fishes 80: 165–179.CrossRefGoogle Scholar
  42. Ross, S. T., 1986. Resource partitioning in fish assemblages: a review of field studies. Copeia 2: 352–388.CrossRefGoogle Scholar
  43. Ruocco, N. L., L. O. Lucifora, J. M. Díaz de Astarloa & C. S. Bremec, 2009. Diet of the white-dotted skate, Bathyraja albomaculata, in waters of Argentina. Journal of Applied Ichthyology 25: 94–97.CrossRefGoogle Scholar
  44. Sánchez, M. F. & E. Mabragaña, 2002. Características biológicas de algunas rayas de la región sudpatagónica. Instituto Nacional de Investigación y Desarrollo Pesquero. Informe Técnico No. 48, Mar del Plata.Google Scholar
  45. Scenna, L. B., S. B. García de la Rosa & J. M. Díaz de Astarloa, 2006. Trophic ecology of the Patagonian skate, Bathyraja macloviana, on the Argentine continental shelf. ICES Journal of Marine Science 63: 867–874.CrossRefGoogle Scholar
  46. Scharf, F. S., F. Juanes & R. A. Rountree, 2000. Predator size–prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size trophic-niche breadth. Marine Ecology Progress Series 208: 229–248.CrossRefGoogle Scholar
  47. Schoener, T. W., 1974. Resource partitioning in ecological communities. Science 185: 27–39.CrossRefPubMedGoogle Scholar
  48. Simpfendorfer, C. A., A. B. Goodreid & R. B. McAuley, 2001. Size, sex and geographical variations in the diet of the tiger shark, Galeocerdo cuvier, from Western Australian waters. Environmental Biology of Fishes 61: 37–46.CrossRefGoogle Scholar
  49. Sims, D. W., 1996. The effect of body size on standard metabolic rate of the lesser spotted dogfish. Journal of Fish Biology 48: 542–544.CrossRefGoogle Scholar
  50. Stehmann, M. F. W., 2002. Proposal of a maturity stages scale for oviparous and viviparous cartilaginous fishes (Pisces, Chondrichthyes). Archive of Fishery and Marine Research 50: 23–48.Google Scholar
  51. Tanaka, S. K., 1973. Suction feeding by the nurse shark. Copeia 3: 606–608.CrossRefGoogle Scholar
  52. Templeman, W., 1982. Stomach contents of the thorny skate, Raja radiata, from the Northwest Atlantic. Journal of Northwest Atlantic Fishery Science 3: 123–126.Google Scholar
  53. Thayer, G. W., W. E. Schaaf, J. W. Angelovic & M. W. La Croix, 1973. Caloric measurements of some estuarine organism. Fishery Bulletin 71: 289–296.Google Scholar
  54. Treolar, M. A., L. J. B. Laurenson & J. D. Stevens, 2007. Dietary comparisons of six skate species (Rajidae) in south-eastern Australian waters. Environmental Biology of Fishes 80: 181–196.CrossRefGoogle Scholar
  55. Van Dykhuizen, G. & H. F. Mollet, 1992. Growth, age estimation and feeding of captive sevengill sharks, Notorynchus cepedianus, at Monterey Bay Aquarium. Australian Journal of Marine and Freshwater Research 43: 297–318.CrossRefGoogle Scholar
  56. Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S-Plus, 4th ed. Springer, New York.Google Scholar
  57. Werner, E. E. & J. F. Gillian, 1984. The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics 15: 383–425.CrossRefGoogle Scholar
  58. White, W. T., M. E. Platell & I. C. Potter, 2004. Comparisons between the diets of four abundant species of elasmobranch in a subtropical embayment: implications for resource partitioning. Marine Biology 144: 439–448.CrossRefGoogle Scholar
  59. Wilson, D. S., 1975. The adequacy of body size as a niche difference. American Naturalist 109: 769–784.CrossRefGoogle Scholar
  60. Wöhler, O. C., A. R. Giussi, S. B. García de la Rosa, M. F. Sánchez, J. E. Hansen, H. D. Cordo, G. L. Alvarez Colombo, I. S. Incorvaia., R. Reta & V. Abachián, 1999. Resultados de la campaña de evaluación de peces demersales australes efectuada en el verano de 1997. Instituto Nacional de Investigación y Desarrollo Pesquero. Informe Técnico No. 24, Mar del Plata.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Santiago A. Barbini
    • 1
    • 2
    Email author
  • Lorena B. Scenna
    • 1
    • 3
  • Daniel E. Figueroa
    • 1
  • María B. Cousseau
    • 1
  • Juan M. Díaz de Astarloa
    • 1
    • 3
  1. 1.Laboratorio de Ictiología, Departamento de Ciencias MarinasUniversidad Nacional de Mar del PlataMar del PlataArgentina
  2. 2.Comisión de Investigaciones Científicas del Gobierno de la Provincia de Buenos Aires (CIC)La PlataArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Ciudad Autónoma de Buenos AiresArgentina

Personalised recommendations