, 636:393 | Cite as

Differential expression of heat shock protein 70 in relation to stress type in the flatworm Schmidtea polychroa

  • Beatriz Sánchez NavarroEmail author
  • Nico K. Michiels
  • Heinz-R. Köhler
  • Thomas G. D’Souza
Primary research paper


Most heat shock proteins help to cope with stress in organisms ranging from bacteria to vertebrates. Many stress types acting on the intensity of intracellular protein can induce expression of heat shock proteins. Here, we studied changes in expression level of heat shock protein 70 (Hsp70), one of the best investigated stress proteins, in response to five potential stress factors in the planarian flatworm Schmidtea polychroa: (1) homogenized planarian tissue, which releases an alarm substance that signals predation injury, (2) physical damage by puncturing, (3) a simulation of ecological competition by adding a mixture of naturally co-occurring species: one Dendrocoelum and two Polycelis flatworms, one Asellus water louse and one leech, and (4) magnesium chloride, which inhibits regeneration ability. We found that alarm substance (1), physical harm (2), and magnesium chloride (4) led to increased expression of Hsp70, while interspecific competition (3) did not result in elevated Hsp70 expression. There was no difference between the experimental negative control and two temporal controls immediately after collection and just before the experiment. Results show that Schmidtea polychroa is not sensitive to sampling and lab maintenance. However, planarian homogenate, magnesium chloride and physical harm all caused Hsp70-inducing stress. We conclude that Hsp70 quantification is appropriate to study the current stress level in planaria in response to specific conditions.


Freshwater ecology Platyhelminthes Biomarker Stress response Regeneration Western blotting 



We thank Milosz Olczak and Gregor Schulte for collecting flatworms and Nadine Timmermeyer for the assistance during the experiment. We are grateful to Rebecca Schulte and Nadine Timmermeyer for fruitful discussions and valuable comments to improve previous versions of this manuscript. This study was supported by a grant from the German Science Foundation (DFG) no. MI 482/11 and the Volkswagen Foundation (Initiative Curriculum Evolutionary Biology: Tübingen in Evolution, Evolution in Tübingen).


  1. Becker, J. & E. A. Craig, 1994. Heat-shock proteins as molecular chaperones. European Journal of Biochemistry 219: 11–23.CrossRefPubMedGoogle Scholar
  2. Beukeboom, L. W., R. P. Weinzierl, K. M. Reed & N. K. Michiels, 1996. Distribution and origin of chromosomal races in the freshwater planarian Dugesia polychroa (Turbellaria: Tricladida). Hereditas 124: 7–15.CrossRefGoogle Scholar
  3. Boorstein, W. R., 1994. Molecular evolution of the hsp70 multigene family. Journal of Molecular Evolution 38: 1–17.CrossRefPubMedGoogle Scholar
  4. Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.CrossRefPubMedGoogle Scholar
  5. Brönmark, C. & L.-A. Hansson, 2000. Chemical communication in aquatic systems: an introduction. Oikos 88: 103–109.CrossRefGoogle Scholar
  6. Clayton, M. E., R. Steinmann & K. Fent, 2000. Different expression patterns of heat shock proteins hsp 60 and hsp 70 in zebra mussels (Dreissena polymorpha) exposed to copper and tributyltin. Aquatic Toxicology 47: 213–226.CrossRefGoogle Scholar
  7. Collins, A. M. & G. W. Gerald, 2009. Attraction of flatworms at various hunger levels toward cues from an odonate predator. Ethology 115: 449–456.CrossRefGoogle Scholar
  8. D’Souza, T. G. & N. K. Michiels, 2006. Genetic signatures of occasional sex in parthenogenetic subpopulations of the freshwater planarian Schmidtea polychroa. Freshwater Biology 51: 1890–1900.CrossRefGoogle Scholar
  9. D’Souza, T. G. & N. K. Michiels, 2008. Correlations between sex rate estimates and fitness across predominantly parthenogenetic flatworm populations. Journal of Evolutionary Biology 21: 276–286.PubMedGoogle Scholar
  10. D’Souza, T. G., M. Storhas, H. Schulenburg, L. W. Beukeboom & N. K. Michiels, 2004. Occasional sex in an ‘asexual’ polyploid hermaphroditeProceedings of the Royal Society of London. Proceedings of the Royal Society of London Series B: Biological Sciences 271: 1001–1007.CrossRefPubMedGoogle Scholar
  11. D’Souza, T. G., R. D. Schulte, H. Schulenburg & N. K. Michiels, 2006. Paternal inheritance in parthenogenetic forms of the planarian Schmidtea polychroa. Heredity 97: 97–101.CrossRefPubMedGoogle Scholar
  12. Deitch, E. A., S. C. Beck, N. C. Cruz & A. De Maio, 1995. Induction of heat shock gene expression in colonic epithelial cells after incubation with Escherichia coli or endotoxin. Critical Care Medicine 23: 1371–1376.CrossRefPubMedGoogle Scholar
  13. Dunnett, C. W., 1955. A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association 50: 1096–1121.CrossRefGoogle Scholar
  14. Feder, M. E. & G. E. Hofmann, 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual Review of Physiology 61: 243–282.CrossRefPubMedGoogle Scholar
  15. Fisher, R. A. & J. H. Bennett, 1990. Statistical Methods, Experimental Design, and Scientific Inference. Oxford University Press, Oxford.Google Scholar
  16. Gophna, U. & E. Z. Ron, 2003. Virulence and the heat shock response. International Journal of Medical Microbiology 292: 453–461.CrossRefPubMedGoogle Scholar
  17. Grebe, E. & D. J. Schaeffer, 1991. Neurobehavioral toxicity of cadmium sulfate to the planarian Dugesia dorotocephala. Bulletin of Environmental Contamination and Toxicology 46: 727–730.CrossRefPubMedGoogle Scholar
  18. Guecheva, T. N., B. Erdtmann, M. S. Benfato & J. A. P. Henriques, 2003. Stress protein response and catalase activity in freshwater planarian Dugesia (Girardia) schubarti exposed to copper. Ecotoxicology and Environmental Safety 56: 351–357.CrossRefPubMedGoogle Scholar
  19. Iwama, G. K., L. O. B. Afonso, A. Todgham, P. Ackerman & K. Nakano, 2004. Are hsps suitable for indicating stressed states in fish? Journal of Experimental Biology 207: 15–19.CrossRefPubMedGoogle Scholar
  20. Jenkins, M. E., T. C. Suzuki & D. W. Mount, 1997. Evidence that heat and ultraviolet radiation activate a common stress-response program in plants that is altered in the uvh6 mutant of Arabidopsis thaliana. Plant Physiology 115: 1351–1358.CrossRefPubMedGoogle Scholar
  21. Köhler, H. R. & H. Eckwert, 1997. The induction of stress proteins (hsp) in Oniscus asellus (Isopoda) as a molecular marker of multiple heavy metal exposure. II: Joint toxicity and transfer to field situations. Ecotoxicology 6: 263–274.CrossRefGoogle Scholar
  22. Köhler, H. R., R. Triebskorn, W. Stöcker, P.-M. Kloetzel & G. Alberti, 1992. The 70 kD heat shock protein (hsp 70) in soil invertebrates: a possible tool for monitoring environmental toxicants. Archives of Environmental Contamination and Toxicology 22: 334–338.CrossRefPubMedGoogle Scholar
  23. Köhler, H. R., G. Alberti, S. Seniczak & A. Seniczak, 2005. Lead-induced hsp70 and hsp60 pattern transformation and leg malformation during postembryonic development in the oribatid mite, Archegozetes longisetosus Aoki. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology 141: 398–405.CrossRefGoogle Scholar
  24. Kristensen, T. N., J. Dahlgaard & V. Loeschcke, 2002. Inbreeding affects Hsp70 expression in two species of Drosophila even at benign temperatures. Evolutionary Ecology Research 4: 1209–1216.Google Scholar
  25. Lewis, S., R. D. Handy, B. Cordi, Z. Billinghurst & M. H. Depledge, 1999. Stress proteins (HSP’s): methods of detection and their use as an environmental biomarker. Ecotoxicology 8: 351–368.CrossRefGoogle Scholar
  26. Lindquist, S., 1986. The heat-shock response. Annual Review of Biochemistry 55: 1151–1191.CrossRefPubMedGoogle Scholar
  27. Lowe, D. G., W. D. Fulford & L. A. Moran, 1983. Mouse and Drosophila genes encoding the major heat shock protein (hsp70) are highly conserved. Molecular and Cellular Biology 3: 1540–1543.PubMedGoogle Scholar
  28. Mayer, M. P. & B. Bukau, 2005. Hsp70 chaperones: cellular functions and molecular mechanism. Cellular and Molecular Life Sciences 62: 670–684.CrossRefPubMedGoogle Scholar
  29. Nadeau, D., S. Corneau, I. Plante, G. Morrow & R. M. Tanguay, 2001. Evaluation for Hsp70 as a biomarker of effect of pollutants on the earthworm Lumbricus terrestris. Cell Stress & Chaperones 6: 153–163.CrossRefGoogle Scholar
  30. Newmark, P. A., 1998. The use of planarians to dissect the molecular basis of metazoan regeneration. Wound Repair and Regeneration 6: S-413–S-420.CrossRefGoogle Scholar
  31. Pagán, O. R., A. L. Rowlands & K. R. Urban, 2006. Toxicity and behavioral effects of dimethylsulfoxide in planaria. Neuroscience Letters 407: 274–278.CrossRefPubMedGoogle Scholar
  32. Patruno, M., M. C. Thorndyke, M. D. C. Carnevali, F. Bonasoro & P. W. Beesley, 2001. Growth factors, heat-shock proteins and regeneration in echinoderms. Journal of Experimental Biology 204: 843–848.PubMedGoogle Scholar
  33. Pongratz, N., M. Storhas, S. Carranza & N. K. Michiels, 2003. Phylogeography of competing sexual and parthenogenetic forms of a freshwater flatworm: patterns and explanations. BMC Evolutionary Biology 3: 23.CrossRefPubMedGoogle Scholar
  34. Reddien, P. W. & A. Sánchez Alvarado, 2004. Fundamentals of planarian regeneration. Annual Review of Cell and Developmental Biology 20: 725–757.CrossRefPubMedGoogle Scholar
  35. Reynoldson, T. B. & R. W. Davies, 1970. Food niche and co-existence in lake-dwelling triclads. Journal of Animal Ecology 39: 599–617.CrossRefGoogle Scholar
  36. Reynoldson, T. B. & J. O. Young, 1963. The food of four species of lake-dwelling triclads. Journal of Animal Ecology 32: 175–191.CrossRefGoogle Scholar
  37. Saló, E., J. F. Abril, T. Adell, F. Cebria, K. Eckelt, E. Fernandez-Taboada, M. Handberg-Thorsager, M. Iglesias, M. D. Molina & G. Rodriguez-Esteban, (2008). Planarian regeneration: achievements and future directions after 20 years of research. International Journal of Developmental Biology. doi:  10.1387/ijdb.072414es.
  38. Sanders, B. M. & L. S. Martin, 1993. Stress proteins as biomarkers of contaminant exposure in archived environmental samples. Science of the Total Environment 139–140: 459–470.CrossRefPubMedGoogle Scholar
  39. Schaeffer, D. J., 1993. Planarians as a model system for in vivo tumorigenesis studies. Ecotoxicology and Environmental Safety 25: 1–18.CrossRefPubMedGoogle Scholar
  40. Schlesinger, M. J., 1990. Heat shock proteins. Journal of Biological Chemistry 265: 12111–12114.PubMedGoogle Scholar
  41. Schürmann, W. & R. Peter, 1998. Inhibition of regeneration in the planarian Dugesia polychroa (Schmidt) by treatment with magnesium chloride: a morphological study of wound closure. Hydrobiologia 383: 111–116.CrossRefGoogle Scholar
  42. Seaby, R. M. H., A. J. Martin & J. O. Young, 1995. The reaction time of leech and triclad species to crushed prey and the significance of this for their coexistence in British lakes. Freshwater Biology 34: 21–28.CrossRefGoogle Scholar
  43. Sørensen, J. G. & V. Loeschcke, 2007. Studying stress responses in the post-genomic era: its ecological and evolutionary role. Journal of Biosciences 32: 447–456.CrossRefPubMedGoogle Scholar
  44. Sørensen, J. G., T. N. Kristensen & V. Loeschcke, 2003. The evolutionary and ecological role of heat shock proteins. Ecology Letters 6: 1025–1037.CrossRefGoogle Scholar
  45. Velde, G., F. Hüsken & L. Welie, 1986. Salinity-temperature tolerance of two closely related triclad species, Dugesia lugubris and D. polychroa (Turbellaria), in relation to their distribution in The Netherlands. Hydrobiologia 132: 279–286.CrossRefGoogle Scholar
  46. Vijayan, M. M., C. Pereira, R. B. Forsyth, C. J. Kennedy & G. K. Iwama, 1997. Handling stress does not affect the expression of hepatic heat shock protein 70 and conjugation enzymes in rainbow trout treated with [beta]-naphthoflavone. Life Sciences 61: 117–127.CrossRefPubMedGoogle Scholar
  47. Wago, H., Y. Koike, M. Sakurai & T. Satou, 1997. Heat shock protein and body surface mucus lectin involved in wound repair and regeneration of planaria. Developmental and Comparative Immunology 21: 66–67.CrossRefGoogle Scholar
  48. Washburn, B. S., J. J. Moreland, A. M. Slaughter, I. Werner, D. E. Hinton & B. M. Sanders, 2002. Effects of handling on heat shock protein expression in rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry 21: 557–560.CrossRefPubMedGoogle Scholar
  49. Wheeler, J. C., V. King & J. Tower, 1999. Sequence requirements for upregulated expression of Drosophila hsp70 transgenes during aging. Neurobiology of Aging 20: 545–553.CrossRefPubMedGoogle Scholar
  50. Wisenden, B. D. & M. C. Millard, 2001. Aquatic flatworms use chemical cues from injured conspecifics to assess predation risk and to associate risk with novel cues. Animal Behaviour 62: 761–766.CrossRefGoogle Scholar
  51. Young, J. O., 1981. A comparative study of the food niches of lake-dwelling triclads and leeches. Hydrobiologia 84: 91–102.CrossRefGoogle Scholar
  52. Zhao, Q., J. Wang, I. V. Levichkin, S. Stasinopoulos, M. T. Ryan & N. J. Hoogenraad, 2002. A mitochondrial specific stress response in mammalian cells. EMBO Journal 21: 4411–4419.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Beatriz Sánchez Navarro
    • 1
    Email author
  • Nico K. Michiels
    • 1
  • Heinz-R. Köhler
    • 2
  • Thomas G. D’Souza
    • 1
  1. 1.Faculty of Biology, Institute for Evolution and Ecology, Animal Evolutionary EcologyUniversity of TuebingenTuebingenGermany
  2. 2.Faculty of Biology, Institute for Evolution and Ecology, Animal Physiological EcologyUniversity of TuebingenTuebingenGermany

Personalised recommendations