, 635:251 | Cite as

Phylogeography of Schizothorax o’connori (Cyprinidae: Schizothoracinae) in the Yarlung Tsangpo River, Tibet

  • Dekui He
  • Yifeng ChenEmail author
Primary research paper


Schizothorax o’connori is endemic to the Yarlung Tsangpo River on the Tibetan Plateau. We assessed the relative impacts of historical and contemporary factors in organizing genetic variation in S. o’connori populations using mitochondrial cytochrome b sequences. We analyzed 191 samples from 11 populations and identified 78 haplotypes. The phylogenetic analyses and analysis of molecular variance all supported the same conclusions of two well-differentiated east–west phylogroups, separated by the Tsangpo Great Gorge. The split between the two clades accounted for 58% of the genetic variance observed among the examined samples. Waterfalls as effective barriers played an important role in shaping the phylogeographical structure of this species. Analyses of migration rates revealed that upstream dispersal was limited crossing waterfalls. Our study revealed substantial spatial and temporal variation in the influence of landscape features on contemporary patterns of genetic structure in S. o’connori. Interglacial range expansions clearly left their mark on contemporary populations above the Tsangpo Great Gorge.


Cytochrome b Landscape features Genetic structure Range expansion Interglacial Yarlung Tsangpo Tibetan Plateau 



We would like to gratefully thank two excellent anonymous reviewers for constructive comments on the manuscript. We wish to thank Liqing Fan for assistance on the laboratory work. Many thanks go to Hongyun Wu and Bena Smith for help with writing. This study was supported by the National Basic Research Program of China (Grant No. 2007CB411601), National Science Foundation of China (Grant No. 30670287), Chinese Academy of Sciences (Grant No. KSCX2-SW-125), and Research Project of Hubei Provincial Department of Education (Grant No. Q20081802).


  1. Avise, J. C., J. Arnold, R. M. Ball, E. Bermingham, T. Lamb, J. E. Neigel, C. A. Reeb & N. C. Saunders, 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics 18: 489–522.Google Scholar
  2. Avise, J. C., D. Walker & G. C. Johns, 1998. Speciation durations and Pleistocene effects on vertebrate phylogeography. Proceedings of the Royal Society of London B 265: 1707–1712.CrossRefGoogle Scholar
  3. Beerli, P. & J. Felsenstein, 2001. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proceedings of the National Academy of Sciences, USA 98: 4563–4568.CrossRefGoogle Scholar
  4. Chen, Y. F. & W. Y. Cao, 2000. Schizothoracinae. In Yue, P. (ed.), Fauna Sinica, Osteichthyes, Cypriniformes III. Science Press, Beijing: 273–335.Google Scholar
  5. Costello, A. B., T. E. Down, S. M. Pollard, C. J. Pacas & E. B. Taylor, 2003. The influence of history and contemporary stream hydrology on the evolution of genetic diversity within species: an examination of microsatellite DNA variation in bull trout, Salvelinus confluentus (Pisces: Salmonidae). Evolution 57: 328–344.PubMedGoogle Scholar
  6. Crispo, E., P. Bentzen, D. N. Reznick, M. T. Kinnison & A. P. Hendry, 2006. The relative influence of natural selection and geography on gene flow in guppies. Molecular Ecology 15: 49–62.PubMedCrossRefGoogle Scholar
  7. Cui, Z., Y. Wu, G. Liu, D. Ge, Q. Pang & Q. Xu, 1998. On Kunlun-Yellow River tectonic movement. Science in China Series D 41(2): 592–600.Google Scholar
  8. Currens, K. P., C. B. Schreck & H. W. Li, 1990. Allozyme and morphological divergence of rainbow-trout (Oncorhynchus mykiss) above and below waterfalls in the Deschutes River, Oregon. Copeia 1990: 730–746.CrossRefGoogle Scholar
  9. Demboski, J. R. & J. Sullivan, 2003. Extensive mtDNA variation within the yellow-pine chipmunk, Tamias amoenus (Rodentia: Sciuridae), and phylogeographic inferences for northwest North America. Molecular Phylogenetics and Evolution 26: 389–408.PubMedCrossRefGoogle Scholar
  10. Excoffier, L., G. Laval & S. Schneider, 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.PubMedGoogle Scholar
  11. Excoffier, L., P. E. Smouse & J. M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.PubMedGoogle Scholar
  12. Fu, Y. X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking, and background selection. Genetics 147: 915–925.PubMedGoogle Scholar
  13. Harpending, H. C., M. A. Batzer, M. Gurven, L. Jorde, A. R. Rogers & S. T. Sherry, 1998. Genetic traces of ancient demography. Proceedings of the National Academy of Sciences, USA 95: 1961–1967.CrossRefGoogle Scholar
  14. He, D. K. & Y. F. Chen, 2006. Biogeography and molecular phylogeny of the genus Schizothorax (Teleostei: Cyprinidae) in China inferred from cytochrome b sequences. Journal of Biogeography 33: 1448–1460.CrossRefGoogle Scholar
  15. He, D. K. & Y. F. Chen, 2007. Molecular phylogeny and biogeography of the highly specialized grade schizothoracine fishes (Teleostei: Cyprinidae) inferred from cytochrome b sequences. Chinese Science Bulletin 52: 777–788.CrossRefGoogle Scholar
  16. Hewitt, G. M., 1996. Some genetic consequences of ice ages and their role in divergence and speciation. Biological Journal of the Linnean Society 58: 247–276.Google Scholar
  17. Hewitt, G. M., 2000. The genetic legacy of quaternary ice ages. Nature 405: 907–913.PubMedCrossRefGoogle Scholar
  18. Hewitt, G. M., 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society B: Biological Sciences 359: 183–195.CrossRefGoogle Scholar
  19. Hubert, N., F. Duponchelle, J. Nuñez, R. Rivera, F. Bonhomme & J.-F. Renno, 2007. Isolation by distance and Pleistocene expansion of the lowland populations of the white piranha Serrasalmus rhombeus. Molecular Ecology 16: 2488–2503.PubMedCrossRefGoogle Scholar
  20. Kumar, S., K. Tamura & M. Nei, 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5: 150–163.PubMedCrossRefGoogle Scholar
  21. Li, J., B. Zheng & X. Yang, 1986. Glaciers of Xizang (Tibet). Science Press, Beijing.Google Scholar
  22. Montgomery, D. R., B. Hallet, Y. Liu, N. Finnegan, A. Anders, A. Gillespie & H. M. Greenberg, 2004. Evidence for Holocene megafloods down the Tsangpo River gorge, southeastern Tibet. Quaternary Research 62: 201–207.CrossRefGoogle Scholar
  23. Nei, M. & W.-H. Li, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, USA 76: 5269–5273.CrossRefGoogle Scholar
  24. Posada, D. & K. A. Crandall, 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.PubMedCrossRefGoogle Scholar
  25. Rogers, A. R. & H. Harpending, 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9: 552–569.PubMedGoogle Scholar
  26. Ronquist, F. & J. P. Huelsenbeck, 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.PubMedCrossRefGoogle Scholar
  27. Rozas, J., J. C. Sanchez-Delbarrio, X. Messeguer & R. Rozas, 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497.PubMedCrossRefGoogle Scholar
  28. Shen, J., H. Lü, S. Wang, S. Chen, X. Yang, Y. Wu & Z. Zhu, 2004. A 2.8 Ma record of environmental evolution and tectonic events inferred from the Cuoe core in the middle of Tibetan Plateau. Science in China Series D 47: 1025–1034.CrossRefGoogle Scholar
  29. Shi, Y., 2002. A suggestion to improve the chronology of Quaternary glaciations in China. Journal of Glaciology and Geocryology 24: 688–692.Google Scholar
  30. Shi, Y., J. Li, B. Li, T. Yao, S. Wang, S. Li, Z. Cui, F. Wang, B. Pan, X. Fang & Q. Zhang, 1999. Uplift of the Qinghai-Xizang (Tibetan) Plateau and East Asia environmental change during late Cenozoic. Acta Geographica Sinica 54: 10–21.Google Scholar
  31. Shi, Y., B. Zheng & T. Yao, 1997. Glaciers and environments during the last glacial maximum (LGM) on the Tibetan Plateau. Journal of Glaciology and Geocryology 19: 97–113.Google Scholar
  32. Swofford, D. L., 2002. PAUP* Phylogenetic analysis using parsimony (*and other methods), Version 4. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  33. Taylor, E. B., M. D. Stamford & J. S. Baxter, 2003. Population subdivision in westslope cutthroat trout (Oncorhynchus clarki lewisi) at the northern periphery of its range: evolutionary inferences and conservation implications. Molecular Ecology 12: 2609–2622.PubMedCrossRefGoogle Scholar
  34. Templeton, A. R., E. Routman & C. A. Phillips, 1995. Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochdondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140: 767–782.PubMedGoogle Scholar
  35. TETCAS (Tibetan Expedition Team of the Chinese Academy of Science), 1983. Tibetan geomorphology. Science Press, Beijing.Google Scholar
  36. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins, 1997. The Clustal X windows interface: flexible strategies for multiple sequences alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882.PubMedCrossRefGoogle Scholar
  37. Wu, Y. F. & C. Z. Wu, 1992. The fishes of the Qinghai-Xizang Plateau (in Chinese). Sichuan Publishing House of Science & Techenology, Chendu.Google Scholar
  38. Yang, Y., 1999. The discovery of Yalu Zangbo Great Canyon and the researches on its character istics and the cause of its formation. Geographical Research 18: 342–348.Google Scholar
  39. Zhang, D. D., 2001. Tectonically controlled fluvial landforms on the Yaluzangbu River and their implications for the evolution of the river. Mountain Research and Development 21: 61–68.CrossRefGoogle Scholar
  40. Zhou, S. & J. Li, 2001. A new study on Qinghai-Tibet Plateau in ice ages. Earth Science Frontiers 8: 67–75.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of HydrobiologyChinese Academy of SciencesWuhanPeople’s Republic of China

Personalised recommendations