Advertisement

Hydrobiologia

, Volume 635, Issue 1, pp 237–249 | Cite as

What is “fallback”?: metrics needed to assess telemetry tag effects on anadromous fish behavior

  • Holly J. Frank
  • Martha E. Mather
  • Joseph M. Smith
  • Robert M. Muth
  • John T. Finn
  • Stephen D. McCormick
Primary research paper

Abstract

Telemetry has allowed researchers to document the upstream migrations of anadromous fish in freshwater. In many anadromous alosine telemetry studies, researchers use downstream movements (“fallback”) as a behavioral field bioassay for adverse tag effects. However, these downstream movements have not been uniformly reported or interpreted. We quantified movement trajectories of radio-tagged anadromous alewives (Alosa pseudoharengus) in the Ipswich River, Massachusetts (USA) and tested blood chemistry of tagged and untagged fish held 24 h. A diverse repertoire of movements was observed, which could be quantified using (a) direction of initial movements, (b) timing, and (c) characteristics of bouts of coupled upstream and downstream movements (e.g., direction, distance, duration, and speed). Because downstream movements of individual fish were almost always made in combination with upstream movements, these should be examined together. Several of the movement patterns described here could fall under the traditional definition of “fallback” but were not necessarily aberrant. Because superficially similar movements could have quite different interpretations, post-tagging trajectories need more precise definitions. The set of metrics we propose here will help quantify tag effects in the field, and provide the basis for a conceptual framework that helps define the complicated behaviors seen in telemetry studies on alewives and other fish in the field.

Keywords

Alosine Tag effect Movement Behavior 

Notes

Acknowledgments

This project was administered through the Massachusetts Cooperative Fish and Wildlife Research Unit. The Massachusetts Cooperative Fish and Wildlife Research Unit is a collaboration of the University of Massachusetts, the U. S. Geological Survey, the Massachusetts Division of Marine Fisheries, the Massachusetts Division of Fisheries and Wildlife and the Wildlife Management Institute. We thank the Massachusetts Division of Marine Fisheries, Ebsco Publishing, New England BioLabs, Ipswich Bay Fly Fishing Derby, numerous alewife adopters, Northeast Utilities, and U.S. Fish and Wildlife Service for their respective supports. A. Silberzweig, S. Turner, and M. Burak provided field assistance. We thank Amy Regish for analyzing plasma samples. Comments from Joe Hightower, Ken Sprankle, and two anonymous reviewers improved the manuscript.

References

  1. Acolas, M. L., M. L. B. Anras, V. Veron, H. Jourdan, M. R. Sabatie & J. L. Bagliniere, 2004. An assessment of the upstream migration and reproductive behaviour of Allis shad (Alosa alosa L.) using acoustic tracking. ICES Journal of Marine Science 61: 1291–1304.CrossRefGoogle Scholar
  2. Andrade, N. O., B. R. Quintella, J. Ferreira, S. Pinela, I. Povoa, S. Pedro & P. R. Almeida, 2007. Sea lamprey (Petromyzon marinus L.) spawning migration in the Vouga river basin (Portugal): poaching impact, preferential resting sites and spawning grounds. Hydrobiologia 582: 121–132.CrossRefGoogle Scholar
  3. Bailey, M. M., J. J. Isely & W. C. Bridges, 2004. Movement and population size of American shad near a low-head lock and dam. Transactions of the American Fisheries Society 133: 300–308.CrossRefGoogle Scholar
  4. Barry, T. & B. Kynard, 1986. Attraction of adult American shad to fish lifts at Holyoke Dam, Connecticut River. North American Journal of Fisheries Management 6: 233–241.CrossRefGoogle Scholar
  5. Barton, B. A. & G. K. Iwama, 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annual Review of Fish Diseases 1: 3–26.CrossRefGoogle Scholar
  6. Beasley, C. A. & J. E. Hightower, 2000. Effects of a low-head dam on the distribution and characteristics of spawning habitat used by striped bass and American shad. Transactions of the American Fisheries Society 129: 1316–1330.CrossRefGoogle Scholar
  7. Bell, C. E. & B. Kynard, 1985. Mortality of adult American shad passing through a 17-Megawatt Kaplan turbine at a low-head hydroelectric dam. North American Journal of Fisheries Management 5: 33–38.CrossRefGoogle Scholar
  8. Bernard, D. R., J. J. Hasbrouck & S. J. Fleischman, 1999. Handling-induced delay and downstream movement of adult chinook salmon in rivers. Fisheries Research 44: 37–46.CrossRefGoogle Scholar
  9. Boggs, C. T., M. L. Keefer, C. A. Peery, T. C. Bjornn & L. C. Stuehrenberg, 2004. Fallback, reascension, and adjusted fishway escapement estimates for adult Chinook salmon and steelhead at Columbia and Snake River dams. Transactions of the American Fisheries Society 133: 932–949.CrossRefGoogle Scholar
  10. Bridger, C. J. & R. K. Booth, 2003. The effects of biotelemetry transmitter presence and attachment procedures on fish physiology and behavior. Reviews in Fisheries Science 11: 13–34.CrossRefGoogle Scholar
  11. Carey, J. B. & S. D. McCormick, 1998. Atlantic salmon smolts are more responsive to an acute handling and confinement stress than parr. Aquaculture 168: 237–253.CrossRefGoogle Scholar
  12. Chappelear, S. J. & D. W. Cooke. 1994. Blueback herring behavior in the tailrace of the St. Stephan Dam and fish lock. In Cooper, J. E., R. T. Eades, R. J. Klauda, & J. G. Loesch (eds), Anadromous Alosa Symposium. Tidewater Chapter. American Fisheries Society, Bethesda, MD: 108–112Google Scholar
  13. Close, D. A., M. S. Fitzpatrick, C. M. Lorion, H. W. Li & C. B. Schreck, 2003. Effects of intraperitoneally implanted radio transmitters on the swimming performance and physiology of Pacific lamprey. North American Journal of Fisheries Management 23: 1184–1192.CrossRefGoogle Scholar
  14. Cooke, S. J., S. G. Hinch, A. P. Farrell, D. A. Patterson, K. Miller-Saunders, D. W. Welch, M. R. Donaldson, K. C. Hanson, G. T. Crossin, M. T. Mathes, A. G. Lotto, K. A. Hruska, I. C. Olsson, G. N. Wagner, R. Thomson, R. Hourston, K. K. English, S. Larsson, J. M. Shrimpton & G. Van der Kraak, 2008. Developing a mechanistic understanding of fish migrations by linking telemetry with physiology, behavior, genomics and experimental biology: an interdisciplinary case study on adult Fraser River sockeye salmon. Fisheries 33: 321–338.CrossRefGoogle Scholar
  15. Dodson, J. J., R. A. Jones & W. C. Leggett, 1972. Behavior of adult American shad (Alosa sapidissima) during migration from salt to fresh water as observed by ultrasonic tracking techniques. Journal of the Fisheries Research Board of Canada 29: 1445–1449.Google Scholar
  16. Frank, H., 2009. Evaluation of pre-spawning movements of anadromous alewives in the Ipswich River using radiotelemetry. M.S. Thesis, University of Massachusetts, Amherst, MA.Google Scholar
  17. Glebe, B. D. & W. C. Leggett, 1981. Temporal, intrapopulation differences in energy allocation and use by American shad (Alosa sapidissima) during the spawning migration. Canadian Journal of Fisheries and Aquatic Sciences 38: 795–805.Google Scholar
  18. Hightower, J. E. & K. L. Sparks, 2003. Migration and spawning habitat of American shad in the Roanoke River, N.C. In Limburg, K. E. & J. R. Waldman (eds), Biodiversity, Status, and Conservation of the World’s Shads. American Fisheries Society, Bethesda, MD: 193–199.Google Scholar
  19. Holbrook, C. M., J. Zydlewski, D. Gorsky, S. L. Shepard & M. T. Kinnison, 2009. Movements of prespawn adult Atlantic salmon near hydroelectric dams in the lower Penobscot River, Maine. North American Journal of Fisheries Management 29: 495–505.CrossRefGoogle Scholar
  20. Jepsen, N., E. E. Nielsen & M. Deacon, 2005. Linking individual migratory behavior of Atlantic salmon to their genetic origin. In Spedicato, M. T., G. Lembo & G. Marmulla (eds), Aquatic Telemetry: Advances and Applications. FAO/COISPA, Ustica, Italy: 45–51.Google Scholar
  21. Jokikokko, E., 2002. Migration of wild and reared Atlantic salmon (Salmo salar L.) in the river Simojoki, northern Finland. Fisheries Research 58: 15–23.CrossRefGoogle Scholar
  22. Keefer, M. L., C. A. Peery, M. A. Jepson & L. C. Stuehrenberg, 2004. Upstream migration rates of radio-tagged adult Chinook salmon in riverine habitats of the Columbia River basin. Journal of Fish Biology 65: 1126–1141.CrossRefGoogle Scholar
  23. Keefer, M. L., C. A. Peery & C. C. Caudill, 2006. Long-distance downstream movements by homing adult Chinook salmon. Journal of Fish Biology 68: 944–950.CrossRefGoogle Scholar
  24. Keefer, M. L., C. C. Caudill, C. A. Peery & C. T. Boggs, 2008. Non-direct homing behaviours by adult Chinook salmon in a large, multi-stock river system. Journal of Fish Biology 72: 27–44.Google Scholar
  25. Lassalle, G., M. Beguer, L. Beaulaton & E. Rochard, 2008. Diadromous fish conservation plans need to consider global warming issues: an approach using biogeographical models. Biological Conservation 141: 1105–1118.CrossRefGoogle Scholar
  26. Lopez, M. A., N. Gazquez, J. M. Olmo-Vidal, M. W. Aprahamian & E. Gisbert, 2007. The presence of anadromous twaite shad (Alosa fallax) in the Ebro River (western Mediterranean, Spain): an indicator of the population’s recovery? Journal of Applied Ichthyology 23: 163–166.CrossRefGoogle Scholar
  27. Lucas, M. C. & E. Baras, 2000. Methods for studying spatial behaviour of freshwater fishes in the natural environment. Fish and Fisheries 1: 283–316.CrossRefGoogle Scholar
  28. Maes, J., M. Stevens & J. Breine, 2008. Poor water quality constrains the distribution and movements of twaite shad Alosa fallax fallax (Lacepede, 1803) in the watershed of river Scheldt. Hydrobiologia 602: 129–143.CrossRefGoogle Scholar
  29. Makinen, T. S., E. Niemela, K. Moen & R. Lindstrom, 2000. Behavior of gill-net and rod-captured Atlantic salmon (Salmo salar L.) during upstream migration and following radio tagging. Fisheries Research 45: 117–127.CrossRefGoogle Scholar
  30. Matter, A. L. & B. P. Sandford, 2003. A comparison of migration rates of radio- and PIT-tagged adult Snake River Chinook salmon through the Columbia River hydropower system. North American Journal of Fisheries Management 23: 967–973.CrossRefGoogle Scholar
  31. McDowall, R. M., 1999. Different kinds of diadromy: different kinds of conservation problems. ICES Journal of Marine Science 56: 410–413.CrossRefGoogle Scholar
  32. Moser, M. L., A. M. Darazsdi & J. R. Hall, 2000. Improving passage efficiency of adult American shad at low-elevation dams with navigation locks. North American Journal of Fisheries Management 20: 376–385.CrossRefGoogle Scholar
  33. Naughton, G. P., C. C. Caudill, M. L. Keefer, T. C. Bjornn, C. A. Peery & L. C. Stuehrenberg, 2006. Fallback by adult sockeye salmon at Columbia River dams. North American Journal of Fisheries Management 26: 380–390.CrossRefGoogle Scholar
  34. Olney, J. E., R. J. Latour, B. E. Watkins & D. G. Clarke, 2006. Migratory behavior of American shad in the York River, Virginia, with implications for estimating in-river exploitation from tag recovery data. Transactions of the American Fisheries Society 135: 889–896.CrossRefGoogle Scholar
  35. Rogers, K. B. & G. C. White, 2007. Analysis of movement and habitat use from telemetry data. In Guy, C. S. & M. L. Brown (eds), Analysis and Interpretation of Freshwater Fisheries Data. American Fisheries Society, Bethesda, MD: 625–676.Google Scholar
  36. Scruton, D. A., R. K. Booth, C. J. Pennell, F. Cubitt, R. S. McKinley & K. D. Clarke, 2007. Conventional and EMG telemetry studies of upstream migration and tailrace attraction of adult Atlantic salmon at a hydroelectric installation on the Exploits River, Newfoundland, Canada. Hydrobiologia 582: 67–79.CrossRefGoogle Scholar
  37. Shrimpton, J. M., J. D. Zydlewski & S. D. McCormick, 2001. The stress response of juvenile American shad to handling and confinement is greater during migration in freshwater than in seawater. Transactions of the American Fisheries Society 130: 1203–1210.CrossRefGoogle Scholar
  38. Smith, J. M., M. E. Mather, H. J. Frank, R. M. Muth, J. T. Finn & S. D. McCormick, 2009. Evaluation of a gastric radio tag insertion technique for anadromous alewives. North American Journal of Fisheries Management 29: 367–377.CrossRefGoogle Scholar
  39. Sprankle, K., 2005. Interdam movements and passage attraction of American shad in the lower Merrimack River main stem. North American Journal of Fisheries Management 25: 1456–1466.CrossRefGoogle Scholar
  40. Stein, M. W., 1963. D-glucose determination with hexokinase and glucose-6-phosphatedehydrogenase. In Bergmeyer, H. U. (ed.), Methods in Enzymatic Analysis. Academic Press, New York: 117–122.Google Scholar
  41. Thorstad, E. B., T. F. Næsje, P. Fiske & B. Finstad, 2003. Effects of catch and release on Atlantic salmon in the River Alta, northern Norway. Fisheries Research 60: 293–307.CrossRefGoogle Scholar
  42. Thorstad, E. B., P. Fiske, K. Aarestrup, N. A. Hvidsten, K. Harsaker, T. G. Heggberget & F. Okland, 2005. Upstream migration of Atlantic salmon in three regulated rivers. In Spedicato, M. T., G. Lembo & G. Marmulla (eds), Aquatic Telemetry: Advances and Applications. FAO/COISPA, Ustica, Italy: 111–121.Google Scholar
  43. Winter, J. D., 1996. Advances in underwater biotelemetry. In Murphy, B. R. & D. W. Willis (eds), Fisheries Techniques, 2nd ed. American Fisheries Society, Bethesda, MD: 555–590.Google Scholar
  44. Young, J. L., S. J. Cooke, S. G. Hinch, G. T. Crossin, D. A. Patterson, A. P. Farrell, G. Van Der Kraak, A. G. Lotto, A. Lister, M. C. Healey & K. K. English, 2006. Physiological and energetic correlates of en route mortality for abnormally early migrating adult sockeye salmon in the Thompson River, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 63: 1067–1077.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Holly J. Frank
    • 1
    • 3
  • Martha E. Mather
    • 2
    • 3
  • Joseph M. Smith
    • 1
    • 3
  • Robert M. Muth
    • 3
  • John T. Finn
    • 3
  • Stephen D. McCormick
    • 4
  1. 1.Massachusetts Cooperative Fish and Wildlife Research Unit, Department of Natural Resources ConservationUniversity of MassachusettsAmherstUSA
  2. 2.U. S. Geological Survey, Massachusetts Cooperative Fish and Wildlife Research Unit, Department of Natural Resources ConservationUniversity of MassachusettsAmherstUSA
  3. 3.Department of Natural Resources ConservationUniversity of MassachusettsAmherstUSA
  4. 4.Conte Anadromous Fish Research CenterU. S. Geological SurveyTurners FallsUSA

Personalised recommendations