, Volume 647, Issue 1, pp 35–50 | Cite as

Relating macroinvertebrate community structure to environmental characteristics and sediment contamination at the scale of the St. Lawrence River

  • Stéphane MassonEmail author
  • Mélanie Desrosiers
  • Bernadette Pinel-Alloul
  • Louis Martel


There is still no assessment of the impact of sediment chemicals and environmental conditions on macroinvertebrates at the scale of the St. Lawrence River. In order to assess these impacts in the fluvial section of the St. Lawrence River including the Montreal harbour, the community structure of macroinvertebrates using different taxonomic aggregations (genus and family) and taxa attributes (abundance, presence–absence, indicator taxa) was assessed. The goal of the study was to determine the indicator taxa of macroinvertebrates along the fluvial continuum and relate changes in macroinvertebrate community to sediment chemical conditions and environmental characteristics of habitats using variance partitioning. This study also evaluated which taxonomic level and taxa attributes of macroinvertebrates were the most suitable for bioassessment of quality of sediments and habitat environment in the St. Lawrence River. Four different macroinvertebrate assemblages were found distributed along the fluvial continuum using either abundance or presence–absence data and genus or family levels. Indicator taxa characteristic of the different macroinvertebrate communities were associated with the sediment contamination gradient. However, habitat environmental characteristics (water masses, sulphur and DOC in sediments) had more influence on macroinvertebrate assemblages than sediment contamination. Our study confirms that family level analysis can give information comparable to the genus level analysis using presence–absence or abundance of macroinvertebrates, yet a higher number of indicator taxa were detected at the genus level.


Macroinvertebrates St. Lawrence River Community structure Sediment contamination Habitat environment Indicator taxa 



This study is a part of a larger collaborative program funded by the 3rd and 4th phase of the St. Lawrence Action Plan, with the active participation of Environment Canada (Environmental Protection Operations; Science and Technology Branch), of the Ministère du Développement durable, de l’Environnement et des Parcs du Québec (Centre d’expertise en analyse environnementale du Québec; Direction des évaluations environnementales; Direction du suivi de l’état de l’environnement) and Cemagref (Lyon, France). The project was also associated with the sustainable navigation strategy for the St. Lawrence River, which includes aspects such as sustainable dredging management, contaminated site restoration and revision of sediment quality guidelines for contaminated sediment. We address our special thanks to project steering committee members: C. Bélanger, C. Gagnon, M. Pelletier, S. Thibodeau, L. Boudreau, I. Guay, P. Michon, G. Triffaut-Bouchet, M. Babut, M. Arseneault, G. Brault, A. Lajeunesse, and P. Turcotte.

Supplementary material

10750_2009_9915_MOESM1_ESM.doc (304 kb)
Supplementary material 1 (DOC 304 kb)


  1. Allen, R. J., 1986. The limnological units of the lower Great Lakes St. Lawrence corridor and their role in the source and aquatic fate of toxic contaminants. Water Pollution Research Journal of Canada 21: 168–186.Google Scholar
  2. Brinkhurst, R. O. & D. G. Cook, 1974. Aquatic earthworms. In Hart, C. W. & S. L. H. Fuller (eds), Pollution Ecology of Freshwater Invertebrates. Academic Press, New York: 143–156.Google Scholar
  3. Brinkhurst, R. O. & D. G. Cook, 1980. Aquatic Oligochaete Biology. Plenum Press, New York and London: 529 pp.Google Scholar
  4. Burt, A. J., P. M. McKee, D. R. Hart & P. B. Kauss, 1991. Effects of pollution on benthic invertebrate communities of the St. Marys River, 1985. Hydrobiologia 219: 63–81.CrossRefGoogle Scholar
  5. Carignan, R., S. Lorrain & K. Lum, 1994. A 50-yr record of pollution by nutrients, trace metals, and organic chemicals in the St. Lawrence River. Canadian Journal of Fisheries and Aquatic Sciences 51: 1088–1100.CrossRefGoogle Scholar
  6. Chessman, B. C., S. A. Williams & C. Besley, 2007. Bioassessment of streams with macroinvertebrates: effect of sampled habitats and taxonomic resolution. Journal of the North American Benthological Society 26: 546–565.CrossRefGoogle Scholar
  7. Clements, W. H., D. S. Cherry & J. Cairns, 1988. The impact of heavy metals on macroinvertebrate communities: a comparison of observational and experimental results. Canadian Journal of Fisheries and Aquatic Sciences 45: 2017–2025.CrossRefGoogle Scholar
  8. Clements, W. H., D. S. Cherry & J. H. Van Hassel, 1992. Assessment of the impact of heavy metals on benthic communities at the Clinch River (Virginia): evaluation of an index of community sensitivity. Canadian Journal of Fisheries and Aquatic Sciences 49: 1686–1694.CrossRefGoogle Scholar
  9. Cook, D. G. & M. G. Johnson, 1974. Benthic macroinvertebrates of the St. Lawrence Great Lakes. Journal of Fisheries Research Board of Canada 3: 763–782.Google Scholar
  10. Cyr, H. & J. A. Downing, 1988. Empirical relationships of phytomacrofaunal abundance to plant biomass and macrophyte bed characteristics. Canadian Journal of Fisheries and Aquatic Sciences 45: 976–984.CrossRefGoogle Scholar
  11. Demers, R. & H. Levasseur, 1976. Étude de la diversité du benthos Phase 1. Étude sur le fleuve Saint-Laurent. Direction de la connaissance et de la qualité du milieu: 53 pp.Google Scholar
  12. Désilets, L. & C. Langlois, 1989. Variabilité spatiale et saisonnière de la qualité de l’eau du fleuve Saint-Laurent. Environnement Canada, Direction des eaux intérieures, Région du Québec: 90 pp.Google Scholar
  13. Desrosiers, M., C. Gagnon, S. Masson, L. Martel & M. P. Babut, 2008. Relationships among extractable and reactive metals and metalloid in the St. Lawrence River sediment: bioaccumulation by chironomids and implication for ecological risk assessment. Science of the Total Environment 389: 101–114.PubMedCrossRefGoogle Scholar
  14. Désy, J. C., J. F. Archambault, B. Pinel-Alloul, J. Hubert & P. G. C. Campbell, 2000. Relationships between total mercury in sediments and methyl mercury in the freshwater gastropod prosobranch Bithynia tentaculata in the St. Lawrence River, Quebec. Canadian Journal of Fisheries and Aquatic Sciences 57: 164–173.CrossRefGoogle Scholar
  15. Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.Google Scholar
  16. Environment Canada, 2005. The 2005 Pulp and Paper EEM Technical Guidance, 12 Documents.
  17. Environnement Canada, 2005. Géoinformations sur les sédiments du Saint-Laurent. Environnement Canada, Direction des Sciences et de la Technologie, Monitoring et surveillance de la qualité de l’eau, Montréal.
  18. Fortin, G., D. Leclair & A. Sylvestre, 1994. Synthèse des connaissances sur les aspects physiques et chimiques de l’eau et des sédiments du lac Saint-Louis. Rapp. tech., zones d’intervention prioritaire nos. 5 et 6. Environnement Canada, Conservation et Protection, Région du Québec, Centre Saint-Laurent, Montréal, Québec.Google Scholar
  19. Fremling, C. R., 1967. Methods for mass-rearing Hexagenia mayflies (Ephemeroptera-Ephemeridae). Transactions of the American Fisheries Society 96: 407–410.CrossRefGoogle Scholar
  20. Gao, Q.-F., K. Cheung, S.-G. Cheung & P. K. S. Shin, 2005. Effects of nutrient enrichment derived from fish farming activities on macroinvertebrate assemblages in a subtropical region of Hong Kong. Marine Pollution Bulletin 51: 994–1002.PubMedCrossRefGoogle Scholar
  21. Goodnight, C. J., 1973. The use of aquatic macroinvertebrates as indicators of stream pollution. Transaction of the American Microscopical Society 92: 1–13.CrossRefGoogle Scholar
  22. Gower, A. M., G. Myers, M. Kent & M. E. Foulkes, 1994. Relationships between macroinvertebrate communities and environmental variables in metal-contaminated streams in south-west England. Freshwater Biology 32: 199–221.CrossRefGoogle Scholar
  23. Griffiths, R. W., 1991. Environmental quality assessment of the St. Clair River as reflected by the distribution of benthic macroinvertebrates in 1985. Hydrobiologia 219: 143–164.CrossRefGoogle Scholar
  24. Hellawell, J. M. 1986. Biological Indicators of Freshwater Pollution and Environmental Management. Elsevier, London: 546 pp.Google Scholar
  25. Hynes, H. B. N., 1959. The use of invertebrates as indicators of river pollution. Proceedings of the Linnean Society of London 170: 165–169.CrossRefGoogle Scholar
  26. Ihakam, R. & R. Gentleman, 1996. R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics 5: 299–314.CrossRefGoogle Scholar
  27. Johnson, R. K., T. Wiederholm & D. M. Rosenberg, 1993. Freshwater biomonitoring using individual organisms, populations, and species assemblages of benthic macroinvertebrates. In Rosenberg, D. M. & V. H. Resh (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York: 40–125.Google Scholar
  28. Klemm, D. J., 1985. A guide to the freshwater annelida (Polychaeta, Naidid and Tubificid Oligochaeta and Hirudinea) of North America. Kendall/Hunt Publishing Co., Dubuque Iowa. ISBN 0-8403-3577-6: 198 pp.Google Scholar
  29. Klemm, D. J., P. A. Lewis, F. Fulk & J. M. Lazorchak. 1990. Macroinvertebrate Field and Laboratory Methods for Evaluating the Biological Integrity of Surface Waters. U.S. Environmental Protection Agency, Office of Research and Development of the Environmental Monitoring Systems Laboratory, Cincinnati, OH: 206 pp.Google Scholar
  30. Lang, C., 1984. Eutrophication of Lakes Leman and Neuchatel (Switzerland) indicated by oligochaete communities. Hydrobiologia 115: 131–138.CrossRefGoogle Scholar
  31. Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.CrossRefGoogle Scholar
  32. Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier Science BV, Amsterdam: 853 pp.Google Scholar
  33. Loiselle, C., G. Fortin, S. Lorrain & M. Pelletier, 1997. Dynamics and Contamination of St. Lawrence River Sediment. Environment Canada – Quebec Region, Environmental Conservation, Montreal, St. Lawrence Centre, State of the Environment: 127 pp.Google Scholar
  34. Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company, Dubuque, Iowa: 442 pp.Google Scholar
  35. Milbrink, G., 1973. Communities of oligochaeta as indicators of the water quality in Lake Hjalmaren. Zoon 1: 77–88.Google Scholar
  36. Moore, J. W., V. A. Beaubien & D. J. Sutherland, 1979. Comparative effects of sediment and water contamination on benthic invertebrates in four lakes. Bulletin of Environmental Contamination and Toxicology 23: 840–847.PubMedCrossRefGoogle Scholar
  37. Nettleton, P., 1996. Modelling Component Report for the Cornwall MISA Pilot Site Study: technical procedures for the derivation of water quality-based effluent loading limits for point-source discharges to large rivers. Report prepared for Ontario Ministry of Environment and Energy, May 1996. PIBS 3426E. ISBN 0-7778-5221-7.Google Scholar
  38. Pinder, L. C. V., 1986. Biology of freshwater Chironomidae. Annual Review of Entomology 31: 1–23.CrossRefGoogle Scholar
  39. Pinel-Alloul, B., G. Méthot, L. Lapierre & A. Willsie, 1996. Macroinvertebrate community as a biological indicator of ecological and toxicological factors in lake Saint-François (Québec). Environmental Pollution 91: 64–87.CrossRefGoogle Scholar
  40. Pinel-Alloul, B., G. Methot & D. Borcard, 2004. Évaluation de l’état des données sur les macroinvertébrés benthiques du fleuve Saint-Laurent et de ses tributaires pour une application d’un modèle de suivi environnemental avec l’approche des conditions de référence (CABIN). Centre Saint-Laurent, Environnement Canada: 68 pp.Google Scholar
  41. Resh, V. H. & E. P. McElravy, 1984. Contemporary quantitative approaches to biomonitoring using benthic macroinvertebrates. In Rosenberg, B. & V. H. Resh (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York: 159–194.Google Scholar
  42. Reynoldson, T. B., D. M. Rosenberg & V. H. Resh, 2001. Comparison of models predicting invertebrate assemblages for biomonitoring in the Fraser River catchment, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 58: 1395–1410.CrossRefGoogle Scholar
  43. Rondeau, B., D. Cossa, P. Gagnon, T. T. Pham & C. Surette, 2005. Hydrological and biogeochemical dynamics of the minor and trace elements in the St. Lawrence River. Applied Geochemistry 20: 1391–1408.CrossRefGoogle Scholar
  44. Rosenberg, D. M. & V. H. Resh, 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York: 488 pp.Google Scholar
  45. Salánki, J., A. Farkas, T. Kamardina & K. S. Rózsa, 2003. Molluscs in biological monitoring of water quality. Toxicology Letters 140–141: 403–410.PubMedCrossRefGoogle Scholar
  46. Smith, D. G. & R. W. Pennak, 2001. Pennak’s Freshwater Invertebrates of the United States: Porifera to Crustacea. John Wiley and Sons, New York: 638 pp.Google Scholar
  47. Stief, P., L. Nazarova & D. D. Beer, 2005. Chimney construction by Chironomus riparius larvae in response to hypoxia: microbial implications for freshwater sediments. Journal of the North American Benthological Society 24: 858–871.CrossRefGoogle Scholar
  48. Suchanek, T. H., P. J. Richerson, L. J. Holts, B. A. Lamphere, C. E. Woodmansee, D. G. Slotton, E. J. Harner & L. A. Woodward, 1995. Impacts of mercury on benthic invertebrate populations and communities within the aquatic ecosystem of Clear Lake, California. Water Air and Soil Pollution 80: 951.CrossRefGoogle Scholar
  49. Tall, L., G. Méthot, A. Armellin & B. Pinel-Alloul, 2008. Bioassessment of benthic macroinvertebrates in wetland habitats of Lake Satin-Pierre (St. Lawrence River). Journal of Great Lakes Research 34: 599–614.Google Scholar
  50. Tessier, C., A. Cattaneo, B. Pinel-Alloul, C. Hudon & D. Borcard, 2008. Invertebrate communities associated with metaphyton and emergent and submerged macrophytes in a large river. Aquatic Sciences 70: 10–20.CrossRefGoogle Scholar
  51. Thompson, B. W., M. J. Riddle & J. S. Stark, 2003. Cost-efficient methods for marine pollution monitoring at Casey stations, East Antarctica: the choice of sieve mesh-size and taxonomic resolution. Marine Pollution Bulletin 46: 232–243.PubMedCrossRefGoogle Scholar
  52. Thorp, J. H. & A. P. Covich, 2001. Ecology and Classification of North American Freshwater Invertebrates. Academic Press, San Diego: 1038 pp.Google Scholar
  53. Warnick, S. L. & H. L. Bell, 1969. The acute toxicity of some heavy metals to different species of aquatic insects. Journal of Water Pollution 41: 280–284.Google Scholar
  54. Weston, D. P., 1990. Quantitative examination of macrobenthic community changes along an organic enrichment gradient. Marine Ecology Progress Series 61: 233–244.CrossRefGoogle Scholar
  55. Wiederholm, T. 1976. Chironomids as indicators of water quality in Swedish lakes. NLU Information 10. Paper Presented at the 6th International Symposium on Chironomidae, Prague: 17 pp.Google Scholar
  56. Wiederholm, T., 1984. Responses of aquatic insects to environmental pollution. In Resh, V. H. & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger Publisher, New York: 508–557.Google Scholar
  57. Willsie, A. & G. Costan, 1996. Analyse des communautés benthiques comme indicateur de santé des écosystèmes du Saint-Laurent. Centre Saint-Laurent, Environnement Canada: 68 pp.Google Scholar
  58. Winner, R. W., B. W. Boesel & M. P. Farrell, 1980. Insect community structure as an index of heavy-metal pollution in lotic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 37: 647–655.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Stéphane Masson
    • 1
    Email author
  • Mélanie Desrosiers
    • 2
    • 3
  • Bernadette Pinel-Alloul
    • 2
  • Louis Martel
    • 3
  1. 1.Aquarium du Québec, SÉPAQQuébecCanada
  2. 2.GRIL, Département de Sciences BiologiquesUniversité de MontréalMontréalCanada
  3. 3.CEAEQ, Ministère du Développement Durablede l’Environnement et des Parcs du QuébecQuébecCanada

Personalised recommendations