, Volume 635, Issue 1, pp 205–213 | Cite as

Size-structured effects of common carp on reproduction of pond-breeding amphibians

  • Janusz Kloskowski
Primary research paper


The role of fish in driving amphibian communities has been widely recognized. However, little is known about size-structured interactions between amphibian and fish populations. This study compared the taxonomic occurrence and densities of larval amphibians between unstocked ponds and ponds stocked with different age cohorts of common carp Cyprinus carpio differing in average body size. The average total densities of early and late breeding anurans known to be vulnerable to fish were by 1–2 orders of magnitude greater in the presence of young-of-the-year carp than that of older cohorts. The probabilities of occurrence of the most common taxa did not differ between ponds stocked with young-of-the-year fish and ponds free of carp, but were significantly larger in those ponds than in ponds stocked with large-size cohorts. No significant differences between pond categories were found for densities of unpalatable Bufo bufo larvae. In aquatic systems harbouring size-structured fish populations, a fish age/size gradient may explain differential habitat suitability for breeding amphibians better than the fish presence/absence dichotomy. When dominated by young cohorts incapable of predation or of adverse habitat alteration, fish-abundant waters are suitable for amphibian reproduction. Conversely, even a ‘non-predatory’ fish, after attaining large body size, may exert a detrimental impact on amphibian breeding success. These findings may be particularly important for amphibian conservation at pond fisheries characterized by spatial separation of age/size distributed stocks.


Amphibian conservation Breeding habitat Fish ponds Larval anurans Size-structured interactions 



I am grateful to the fish farmers (M. Filipiak, E. Lagowski, J. Orzepowski, G. Olszak and M. Sagan) for the data on fish supply. M. Nieoczym, M. Polak and P. Pitucha provided field assistance. This research was funded by grants from the State Committee for Scientific Research (KBN 6 PO4F 066 20 and 3 PO4F 036 23). The comments of two anonymous referees greatly improved an early draft of the manuscript.


  1. APHA (American Public Health Association), 1985. Standard Methods for the Examination of Water and Wastewater, 16th ed. APHA, Washington, DC.Google Scholar
  2. Aronsson, S. & J. A. E. Stenson, 1995. Newt-fish interactions in a small forest lake. Amphibia-Reptilia 16: 177–184.CrossRefGoogle Scholar
  3. Berger, L., 2000. Płazy i gady Polski [Amphibians and reptiles of Poland]. PWN, Warszawa-Poznań.Google Scholar
  4. Brönmark, C. & P. Edenhamn, 1994. Does the presence of fish affect the distribution of tree frogs (Hyla arborea)? Conservation Biology 8: 841–845.CrossRefGoogle Scholar
  5. Casselman, J. M. & H. H. Harvey, 1975. Selective fish mortality resulting from low winter oxygen. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 19: 2418–2429.Google Scholar
  6. Chumchal, M. M., W. H. Nowlin & R. W. Drenner, 2005. Biomass-dependent effects of common carp on water quality in shallow ponds. Hydrobiologia 545: 271–277.CrossRefGoogle Scholar
  7. Crivelli, A. J., 1981. The biology of the common carp, Cyprinus carpio L. in the Camargue, southern France. Journal of Fish Biology 18: 271–290.CrossRefGoogle Scholar
  8. Denoël, M., G. Džukić & M. L. Kalezić, 2005. Effects of widespread fish introductions on paedomorphic newts in Europe. Conservation Biology 19: 162–170.CrossRefGoogle Scholar
  9. Denton, J. S. & T. J. C. Beebee, 1997. Effects of predator interactions, prey palatability and habitat structure on survival of natterjack toad Bufo calamita larvae in replicated seminatural ponds. Ecography 20: 166–174.CrossRefGoogle Scholar
  10. Driver, P. D., G. P. Closs & T. Koen, 2005. The effects of size and density of Carp (Cyprinus carpio) on water quality in an experimental pond. Archiv für Hydrobiologie 163: 117–131.CrossRefGoogle Scholar
  11. Eaton, B. R., W. M. Tonn, C. A. Paszkowski, A. J. Danylchuk & S. M. Boss, 2005. Indirect effects of fish winterkills on amphibian populations in boreal lakes. Canadian Journal of Zoology 83: 1532–1539.CrossRefGoogle Scholar
  12. FAO (Food and Agriculture Organization of the United Nations), 2007a. FAO Yearbook of Fishery Statistics: Aquaculture Production 2005. FAO Statistics Series 100/2, Rome.Google Scholar
  13. FAO, 2007b. The State of World Fisheries and Aquaculture 2006. FAO Fisheries and Aquaculture Department, Rome.Google Scholar
  14. Ficetola, G. F. & F. De Bernardi, 2004. Amphibians in a human dominated landscape: the community structure is related to habitat features and isolation. Biological Conservation 119: 219–230.CrossRefGoogle Scholar
  15. Fletcher, A. R., A. K. Morison & D. J. Hume, 1985. Effects of carp (Cyprinus carpio L.) on communities of aquatic vegetation and turbidity of waterbodies in the Lower Gouldburn River Basin. Australian Journal of Marine and Freshwater Research 36: 311–327.CrossRefGoogle Scholar
  16. Fox, M. G. & A. Keast, 1990. Effects of winterkill on population structure, body size and prey consumption patterns of pumpkinseed in isolated beaver ponds. Canadian Journal of Zoology 68: 2489–2498.CrossRefGoogle Scholar
  17. Gaff, H., D. L. DeAngelis, L. J. Gross, R. Salinas & M. Shorrosh, 2000. A dynamic landscape model for fish in the Everglades and its application to restoration. Ecological Modelling 127: 33–52.CrossRefGoogle Scholar
  18. Goodsell, J. A. & L. B. Kats, 1999. Effect of introduced mosquitofish on Pacific treefrogs and the role of alternative prey. Conservation Biology 13: 921–924.CrossRefGoogle Scholar
  19. Griffiths, R. A., 1985. A simple funnel trap for studying newt populations and an evaluation in smooth and palmate newts, Triturus vulgaris and Triturus helveticus. British Journal of Herpetology 1: 5–10.Google Scholar
  20. Hartel, T., S. Nemes, D. Cogalniceanu, K. Öllerer, O. Schweiger, C. I. Moga & L. Demeter, 2007. The effect of fish and aquatic habitat complexity on amphibians. Hydrobiologia 583: 173–182.CrossRefGoogle Scholar
  21. Hecnar, S. J. & R. T. M’Closkey, 1996. Amphibian species richness and distribution in relation to pond water chemistry in south-western Ontario, Canada. Freshwater Biology 36: 7–15.CrossRefGoogle Scholar
  22. Hecnar, S. J. & R. T. M’Closkey, 1997. The effect of predatory fish on amphibian species richness and distribution. Biological Conservation 79: 123–131.CrossRefGoogle Scholar
  23. Heyer, W. R., R. W. McDiarmid & D. L. Weigmann, 1975. Tadpoles, predation and pond habitats in the tropics. Biotropica 7: 100–111.CrossRefGoogle Scholar
  24. Heyer, W. R., M. A. Donnelly, R. W. McDiarmid, L. C. Hayek & M. S. Foster, 1994. Measuring and Monitoring Biodiversity: Standard Methods for Amphibians. Smithsonian University Press, Washington DC.Google Scholar
  25. Hinojosa-Garro, D. & L. Zambrano, 2004. Interactions of common carp (Cyprinus carpio) with benthic crayfish decapods in shallow ponds. Hydrobiologia 515: 115–122.CrossRefGoogle Scholar
  26. Horváth, L., G. Tamás & C. Seagrave, 1992. Carp and Pond Fish Culture. Fishing News Books, Oxford.Google Scholar
  27. IUCN (International Union for Conservation of Nature, Natural Resources), 1997. Fishing for a Living – The Ecology and Economics of Fishponds in Central Europe. IUCN, Gland, Switzerland and Cambridge, UK.Google Scholar
  28. Kats, L. B. & A. Sih, 1992. Oviposition site selection and avoidance of fish by streamside salamanders (Ambystoma barbouri). Copeia 1992: 468–473.CrossRefGoogle Scholar
  29. Klinger, S. A., J. J. Magnuson & G. W. Gallepp, 1982. Survival mechanisms of the central mudminnow (Umbra lima), fathead minnow (Pimephales promelas) and brook stickleback (Culaea inconstans) for low oxygen in winter. Environmental Biology of Fishes 2: 113–120.CrossRefGoogle Scholar
  30. Knutson, M., W. Richardson, D. M. Reineke, B. R. Gray, J. R. Parmelee & S. E. Weick, 2004. Agricultural ponds support amphibian populations. Ecological Applications 14: 669–684.CrossRefGoogle Scholar
  31. Lamarra, V. A., 1975. Digestive activities of carp as a major contributor to the nutrient loading of lakes. Internationale Vereinigung für Theoretische und Angewandte Limnologie Verhandlungen 19: 2461–2468.Google Scholar
  32. Lammens, E. H. R. R. & W. Hoogenboezem, 1991. Diets and feeding behaviour. In Winfield, I. J. & J. S. Nelson (eds), Cyprinid Fishes: Systematics, Biology and Exploitation. Chapman and Hall, London: 353–372.Google Scholar
  33. Laurila, A. & T. Aho, 1997. Do female common frogs choose their breeding habitat to avoid predation on tadpoles? Oikos 78: 585–591.CrossRefGoogle Scholar
  34. Lehtinen, R. M., S. M. Galatowitsch & J. R. Tester, 1999. Consequences of habitat loss and fragmentation for wetland amphibian assemblages. Wetlands 19: 1–12.CrossRefGoogle Scholar
  35. Loman, J. & B. Lardner, 2006. Does pond quality limit frogs Rana arvalis and Rana temporaria in agricultural landscapes? A field experiment. Journal of Applied Ecology 43: 690–700.CrossRefGoogle Scholar
  36. Lougheed, V. L., B. Crosbie & P. Chow-Fraser, 1998. Predictions on the effect of common carp (Cyprinus carpio) exclusion on water quality, zooplankton, and submergent macrophytes in a Great Lakes wetland. Canadian Journal of Fisheries and Aquatic Sciences 55: 1189–1197.CrossRefGoogle Scholar
  37. Mann, W., P. Dorn & R. Brandl, 1991. Local distribution of amphibians: the importance of habitat fragmentation. Global Ecology and Biogeography Letters 1: 36–41.CrossRefGoogle Scholar
  38. Manteifel, Y. B. & A. N. Reshetnikov, 2002. Avoidance of noxious tadpole prey by fish and invertebrate predators: adaptivity of a chemical defence may depend on predator feeding habits. Archiv fur Hydrobiologie 153: 657–668.Google Scholar
  39. Meyer, A. H., B. R. Schmidt & K. Grossenbacher, 1998. Analysis of three amphibian populations with quarter-century long time-series. Proceedings of the Royal Society of London B 265: 523–528.CrossRefGoogle Scholar
  40. Moran, M. D., 2003. Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100: 403–405.CrossRefGoogle Scholar
  41. Nicieza, A. G., 1999. Context-dependent aggregation in common frog Rana temporaria tadpoles: influence of developmental stage, predation risk and social environment. Functional Ecology 13: 852–858.CrossRefGoogle Scholar
  42. Nyström, P., L. Birkedal, C. Dahlberg & C. Brönmark, 2002. The declining spadefoot toad Pelobates fuscus: calling site choice and conservation. Ecography 25: 488–498.CrossRefGoogle Scholar
  43. Porej, D., M. Micacchion & T. E. Hetherington, 2004. Core terrestrial habitat for conservation of local populations of salamanders and wood frogs in agricultural landscapes. Biological Conservation 120: 399–409.CrossRefGoogle Scholar
  44. Resetaris, W. J. Jr. & H. M. Wilbur, 1989. Choice of oviposition site by Hyla chrysoscelis: role of predators and competitors. Ecology 70: 220–228.CrossRefGoogle Scholar
  45. Richardson, M. J. & F. G. Whoriskey, 1992. Factors influencing the production of turbidity by goldfish. Canadian Journal of Zoology 70: 1585–1589.CrossRefGoogle Scholar
  46. Richardson, M. J., F. G. Whoriskey & L. H. Roy, 1995. Turbidity generation and biological impacts of an exotic fish Carassius auratus, introduced into shallow seasonally anoxic ponds. Journal of Fish Biology 47: 576–585.Google Scholar
  47. Schmutzer, A. C., M. J. Gray, E. C. Burton & D. L. Miller, 2008. Impacts of cattle on amphibian larvae and the aquatic environment. Freshwater Biology 53: 2613–2625.CrossRefGoogle Scholar
  48. Semlitsch, R. D., 1993. Effects of different predators on the survival and development of tadpoles from the hybridogenetic Rana esculenta complex. Oikos 67: 40–46.CrossRefGoogle Scholar
  49. Semlitsch, R. D. & J. W. Gibbons, 1988. Fish predation in size structured populations of treefrog tadpoles. Oecologia 75: 321–326.CrossRefGoogle Scholar
  50. Smith, G. R., J. E. Rettig, G. Mittelbach, J. L. Valiulis & R. R. Schaack, 1999. The effects of fish on assemblages of amphibians in ponds: a field experiment. Freshwater Biology 41: 829–837.CrossRefGoogle Scholar
  51. Tonn, W. M. & C. A. Paszkowski, 1986. Size-limited predation, winterkill, and the organization of Umbra-Perca fish assemblages. Canadian Journal of Fisheries and Aquatic Sciences 43: 194–202.CrossRefGoogle Scholar
  52. Van Buskirk, J., 2003. Habitat partitioning in European and North American pond-breeding frogs and toads. Diversity and Distributions 9: 399–410.CrossRefGoogle Scholar
  53. Van Buskirk, J., 2005. Local and landscape influence on amphibian occurrence and abundance. Ecology 86: 1936–1947.CrossRefGoogle Scholar
  54. Walters, A. W. & D. M. Post, 2008. An experimental disturbance alters fish size structure, but not food chain length in streams. Ecology 89: 3261–3267.PubMedCrossRefGoogle Scholar
  55. Werner, E. E. & J. F. Gilliam, 1984. The ontogenetic niche and species interactions in size-structured populations. Annual Reviews in Ecology and Systematics 15: 393–425.CrossRefGoogle Scholar
  56. Zambrano, L., M. Scheffer & M. Martinez-Ramos, 2001. Catastrophic response of lakes to benthivorous fish introduction. Oikos 94: 344–350.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Nature Conservation, Institute of BiologyM. Curie-Skłodowska UniversityLublinPoland

Personalised recommendations