, Volume 634, Issue 1, pp 65–76 | Cite as

Vegetation recolonisation of a Mediterranean temporary pool in Morocco following small-scale experimental disturbance

  • Btissam Amami
  • Laïla Rhazi
  • Siham Bouahim
  • Mouhssine Rhazi
  • Patrick Grillas


Disturbances are key factors in the dynamics and species richness of plant communities. They create regeneration niches allowing the growth of new individuals in patches submitted to lower intensity of competition. In Mediterranean temporary pools, the intense summer drought constitutes for communities a large-scale disturbance whose intensity varies along the topographical and hydrological gradient between the centre and the edges. In this context, the importance of small-scale disturbance, such as those created by trampling and rooting herbivores in temporary pools, is poorly known. The recolonisation of small bare patches of a woodland temporary pool in western Morocco was studied experimentally in the field. The experiment was carried out using nine small control plots and nine experimental plots (sterilisation of the soil) distributed along the topographical gradient (centre, intermediate and edge zones). The area covered by plant species, and the water levels, were recorded for the plots over two successive hydrological cycles (2006/2007 and 2007/2008). The effects of natural history traits (size of seeds, presence or absence of dispersal mechanisms and annual/perennial) on the success of recolonisation of individual species were analysed. The results show that the experimental plots were rapidly recolonised. The community composition apparently was affected by the very dry conditions during the first year of the experiment, when annual species were largely absent and the clonal perennial species (Bolboschoenus maritimus and Eleocharis palustris) were dominant in the centre and intermediate zones, whilst not a single species colonised the edge zone. In the second year, less dry hydrological conditions allowed annual plants to appear in all three zones. After 2 years, the species composition of the vegetation in the experimental plots was similar to that of the unsterilised (control) plots. The abundance of plants in the centre zone was identical for experimental and control plots; in the intermediate and edge zones, the species’ abundance was lower in the experimental plots than in the control plots, suggesting an incomplete return to the reference condition (control state). Differences in abundance of species were uncorrelated with the size of seeds or to the annual/perennial nature of the plants, but were particularly dependent on the hydrological conditions, which favoured lateral colonisation by perennials (runners, rhizomes). These results show that recovery from the minor disturbances can be rapid in Mediterranean temporary pools.


Temporary pool Hydrological conditions Disturbance Richness Vegetation cover Recolonisation Seed size 


  1. Airoldi, L., 1998. Roles of disturbance, sediment stress, and substratum retention on spatial dominance in algal turf. Ecology 79: 2759–2770.Google Scholar
  2. Angeler, D. G. & J. M. Moreno, 2007. Zooplancton community resilience after press-type anthropogenic stress in temporary ponds. Ecological Applications 17: 1105–1115.PubMedCrossRefGoogle Scholar
  3. Angert, A. L., T. E. Huxman, G. A. Barron-Gafford, K. L. Gerst & D. L. Venable, 2007. Linking growth strategies to long-term population dynamics in desert annuals. Journal of Ecology 95: 321–331.CrossRefGoogle Scholar
  4. Barrat-Segretain, M. H. & G. Bornette, 2000. Regeneration and colonization abilities of aquatic plant fragments: effects of disturbance seasonality. Hydrobiologia 421: 31–39.CrossRefGoogle Scholar
  5. Barrat-Segretain, M. H., G. Bornette & A. Hering-Vilas-Bôas, 1998. Comparative abilities of vegetative regeneration among aquatic plants growing in disturbed habitats. Aquatic Botany 60: 201–211.CrossRefGoogle Scholar
  6. Beijerinck, W., 1976. Zadenatlas der Nederlandsche flora ten behoeve van de botanie, palaeontologie, bodemcultuur en warenkennis. Backhuys & Meesters, Amsterdam.Google Scholar
  7. Bertness, M. D. & S. W. Shumway, 1993. Competition and facilitation in marsh plants. The American Naturalist 142: 718–724.PubMedCrossRefGoogle Scholar
  8. Bisigato, A. J., P. E. Villagra, J. O. Ares & B. E. Rossi, 2008. Vegetation heterogeneity in Monte Desert ecosystems: a multi-scale approach linking patterns and processes. Journal of Arid Environments 73: 182–191.CrossRefGoogle Scholar
  9. Bliss, S. A. & P. H. Zedler, 1998. The germination process in vernal pools: sensitivity to environmental conditions and effects on community structure. Oecologia 113: 67–73.CrossRefGoogle Scholar
  10. Bonis, A., 1993. Dynamique des populations et mécanismes de coexistence des populations de macrophytes immergées en marais temporaires. Thèse Doctorat de l’Université de Montpellier II.Google Scholar
  11. Chase, J. M. & M. A. Leibold, 2003. Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago, IL.Google Scholar
  12. Clauss, M. J. & D. L. Venable, 2000. Seed germination in desert annuals: an empirical test of adaptive bet hedging. The American Naturalist 155: 168–186.PubMedCrossRefGoogle Scholar
  13. Collinge, S. K., 2003. Germination, early growth, and flowering of a vernal pool annual in response to soil moisture and salinity. Madaroño 50(2): 83–93.Google Scholar
  14. Connell, J. H. & R. O. Slatyer, 1977. Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist 111: 1119–1144.CrossRefGoogle Scholar
  15. Coomes, D. A. & P. J. Grubb, 2003. Colonization, tolerance, competition and seed-size variation within functional groups. Trends in Ecology & Evolution 18: 283–291.CrossRefGoogle Scholar
  16. Cousens, R., C. Dytham & R. Law, 2008. Dispersal in Plants: A Population Perspective. Oxford University Press, Oxford.Google Scholar
  17. Crain, C. M., L. K. Albertson & M. D. Bertness, 2008. Secondary succession dynamics in estuarine marshes across landscape-scale salinity gradients. Ecology 89: 2889–2899.PubMedCrossRefGoogle Scholar
  18. Eriksson, O., 2000. Seed dispersal and colonization ability of plants – assessment and implications for conservation. Folia Geobotanica 35: 115–123.CrossRefGoogle Scholar
  19. Fennane, M., M. Ibn Tattou, J. Mathez, A. Ouyahya & J. El Oualidi (eds), 1999. Flore pratique du Maroc. Manuel de détermination des plantes vasculaires, Vol. 1. Travaux de l’Institut Scientifique, Série Botanique N° 36. Rabat.Google Scholar
  20. Fennane, M., M. Ibn Tattou, A. Ouyahya & J. El Oualidi (eds), 2007. Flore Pratique du Maroc, Manuel de détermination des plantes vasculaires, Vol. 2. Travaux de l’Institut Scientifique, Série Botanique N° 38. Rabat.Google Scholar
  21. Fenner, M. (ed.), 2000. Seeds: The Ecology of Regeneration in Plant Communities. CABI Publishing, Wallingford, UK.Google Scholar
  22. Fraterrigo, J. M. & A. J. Rusak, 2008. Disturbance-driven changes in the variability of patterns and processes. Ecology Letters 11: 756–770.PubMedCrossRefGoogle Scholar
  23. Fröborg, H. & O. Eriksson, 1997. Local colonization and extinction of field layer plants in a deciduous forest and their dependence upon life history features. Journal of Vegetation Science 8: 395–400.CrossRefGoogle Scholar
  24. Grillas, P., P. Gauthier, N. Yavercovski & C. Perennou (eds), 2004. Mediterranean Temporary Pools. Vol. 1. Issues Relating to Conservation, Functioning and Management. Tour du Valat, Arles.Google Scholar
  25. Grime, J. P., 1973. Competitive exclusion in herbaceous vegetation. Nature 242: 344–347.CrossRefGoogle Scholar
  26. Grime, J. P., 1985. Towards a functional description of vegetation. In White, J. (ed.), The Population Structure of Vegetation. Dr Junk Publishers, Dordrecht: 503–514.Google Scholar
  27. Hanley, M. E. & M. Fenner, 1998. Pre-germination temperature and the survivorship and onward growth of Mediterranean fire-following plant species. Acta Oecologica 19: 181–187.CrossRefGoogle Scholar
  28. Hanley, M. E., M. Fenner & G. Ne’eman, 2001. Pregermination heat shock and seedling growth of fire-following Fabaceae from four Mediterranean-climate regions. Acta Oecologica 22: 315–320.CrossRefGoogle Scholar
  29. Herrera, J., 1997. Effects of disturbances on the reproductive potential of Lavandula stoechas, a Mediterranean sclerophyllous shurb. Ecography 20: 88–95.CrossRefGoogle Scholar
  30. Johnstone, I. M., 1986. Plant invasion windows: a time-based classification of invasion potential. Biological Reviews 61: 369–394.CrossRefGoogle Scholar
  31. Lake, P. S., 2003. Ecological effects by drought in flowing waters. Freshwater Biology 48: 1161–1172.CrossRefGoogle Scholar
  32. Lavorel, S. & E. Garnier, 2002. Predicting the effects of environmental changes on plant community composition and ecosystem functioning: revisiting the Holy Grail. Functional Ecology 16: 545–556.CrossRefGoogle Scholar
  33. Lavorel, S., J. Lepart, M. Debussche, J. Lebreton & J. Beffy, 1994. Small scale disturbances and the maintenance of species diversity in Mediterranean old fields. Oikos 70: 455–473.CrossRefGoogle Scholar
  34. Leishman, M. R., 2001. Does the seed size/number tradeoff model determine plant community structure? An assessment of the model mechanisms and their generality. Oikos 93: 294–302.CrossRefGoogle Scholar
  35. Lenssen, J., F. Menten, W. V. D. Putten & K. Bloom, 1999. Control of plant species richness and zonation of functional groups along a freshwater flooding gradient. Oikos 86: 523–534.CrossRefGoogle Scholar
  36. Maire, R., 1952–1987. Flore de L’Afrique du Nord, Lechevalier, Vol. 16. Paris.Google Scholar
  37. Manzaneda, A. J., U. Sperens & M. B. Garcia, 2005. Effects of microsite disturbances and herbivory on seedling performance in the perennial herb Helleborus foetidus (Ranunculaceae). Plant Ecology 179: 73–82.CrossRefGoogle Scholar
  38. Medail, F., H. Michaud, J. Molina, G. Paradis & R. Loisel, 1998. Conservation de la flore et de la végétation des mares temporaires dulçaquicole et oligotrophes de France Méditerranéenne. Ecologia Mediterranea 24: 119–134.Google Scholar
  39. Middleton, B. A., 1999. Wetland Restoration, Flood Pulsing, and Disturbance Dynamics. John Wiley and Sons, New York.Google Scholar
  40. Morzaria-Luna, H. N. & J. B. Zedler, 2007. Does seed availability limit plant establishment during salt marsh restoration? Estuaries 30: 12–25.Google Scholar
  41. Neff, K. P. & A. H. Baldwin, 2005. Seed dispersal into wetlands: techniques and results for a restored tidal freshwater marsh. Wetlands 25: 392–404.CrossRefGoogle Scholar
  42. Noe, G. B. & J. B. Zedler, 2000. Differential effects of four abiotic factors on the germination of salt marsh annuals. American Journal of Botany 87: 1679–1692.PubMedCrossRefGoogle Scholar
  43. Pearson, T. R. H., D. F. R. P. Burslem, C. E. Mulins & J. W. Dalling, 2002. Germination ecology of neotropical pioneers: interacting effects of environmental conditions and seed size. Ecology 83: 2798–2807.CrossRefGoogle Scholar
  44. Quézel, P., 1998. La vegetation des mares transitoires à Isoetes en region méditerranéenne, intérêt patrimonial et conservation. Ecologia Mediterranea 24(2): 111–117.Google Scholar
  45. Rey, P. & J. M. Alcantara, 2000. Recruitment dynamics of a fleshy-fruited plant (Olea europaea), connecting patterns of seed dispersal to seedling establishment. Journal of Ecology 88: 622–633.CrossRefGoogle Scholar
  46. Rhazi, L., P. Grillas, L. Tan Ham & D. El Khyari, 2001. The seed bank and the between years dynamics of the vegetation of a Mediterranean temporary pool (NW Morocco). Ecologia Mediterranea 27: 69–88.Google Scholar
  47. Rhazi, M., P. Grillas, A. Charpentier & F. Medail, 2004. Experimental management of Mediterranean temporary pools for conservation of the rare quillwort Isoetes setacea. Biological Conservation 118: 675–684.CrossRefGoogle Scholar
  48. Rhazi, L., M. Rhazi, P. Grillas & D. El Khyari, 2006. Richness and structure of plant communities in temporary pools from western Morocco: influence of human activities. Hydrobiologia 570: 197–203.CrossRefGoogle Scholar
  49. Riis, T., 2008. Dispersal and colonisation of plants in lowland streams: success rates and bottlenecks. Hydrobiologia 596: 341–351.CrossRefGoogle Scholar
  50. Soons, M. B., C. Van der Vlugt, B. Van Lith, G. W. Heil & M. Klaassen, 2008. Small seed size increases the potential for dispersal of wetland plants by ducks. Journal of Ecology 96: 619–627.CrossRefGoogle Scholar
  51. Van den Broek, T., R. Van Diggelen & R. Bobbink, 2005. Variation in seed buoyancy of species in wetland ecosystems with different flooding dynamics. Journal of Vegetation Science 16: 579–586.CrossRefGoogle Scholar
  52. Vanschoenwinkel, B., A. Waterkeyn, T. Vandecaetsbeek, O. Pineau, P. Grillas & L. Brendonck, 2008. Dispersal of freshwater invertebrates by large terrestrial mammals: a case study with wild boar (Sus scrofa) in Mediterranean wetlands. Freshwater Biology 53: 2264–2273.Google Scholar
  53. Westoby, M., M. R. Leishman & J. Lord, 1996. Comparative ecology of seed size and dispersal. Philosophical Transactions of the Royal Society London. Series B 351: 1309–1318.CrossRefGoogle Scholar
  54. Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic Press, San Diego.Google Scholar
  55. White, P. S. & S. T. A. Pickett, 1985. Natural disturbance and patch dynamics: an introduction. In Pickett, S. T. A. & P. S. White (eds), The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, London: 3–13.Google Scholar
  56. Wolters, M. & J. P. Bakker, 2002. Soil seed bank and driftline composition along a successional gradient on a temperate salt marsh. Applied Vegetation Science 5: 55–62.CrossRefGoogle Scholar
  57. Zavala, M. A., J. M. Espelta & J. Retana, 2000. Constraints and trade-offs in the Mediterranean plant communities: the case of holm-oak-aleppo pine forest. The Botanical Review 66(1): 119–149.CrossRefGoogle Scholar
  58. Zedler, J. B., 2000. Progress in wetland restoration ecology. Trends in Ecology & Evolution 15: 402–407.CrossRefGoogle Scholar
  59. Zidane, L., 1990. Etude bioclimatique et étude phyto-écologique des forêts de la province de Benslimane “Ouest Marocain” (Bioclimatic Study and Phyto-ecological Study of the Woodland of the West Moroccan (Province of Benslimane). These 3ème cycle. Univ. Mohammed V, Rabat: 187 pp.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Btissam Amami
    • 1
    • 4
  • Laïla Rhazi
    • 1
  • Siham Bouahim
    • 1
    • 4
  • Mouhssine Rhazi
    • 3
  • Patrick Grillas
    • 2
  1. 1.Laboratory of Aquatic Ecology and EnvironmentHassan II Aïn Chock UniversityMaarif, CasablancaMorocco
  2. 2.Tour du ValatResearch Centre for the Conservation of Mediterranean WetlandsArlesFrance
  3. 3.Department of Biology, Faculty of Sciences and Techniques of ErrachidiaMoulay Ismail UniversityBoutalamine, ErrachidiaMorocco
  4. 4.Institute of Evolution SciencesUniversity of Montpellier II – CNRSMontpellier Cedex 05France

Personalised recommendations