Hydrobiologia

, Volume 635, Issue 1, pp 37–43 | Cite as

Polymorphism and crypsis in the boring giant clam (Tridacna crocea): potential strategies against visual predators

Primary research paper

Abstract

The giant clam, Tridacna crocea, is a sessile bivalve that bores into rocks and dead corals found on shallow Indo-Pacific coral reefs. Clams are a valuable prey item and T. crocea have developed at least two effective strategies to avoid predation: borrowing, and simultaneous rapid mantle withdrawal and valve contraction. Tridacna crocea obtain their food via photosynthetic products of symbiotic zooxanthellae and from filter-feeding. When they retract their mantles in response to predators, both photosynthesis and feeding are disrupted. Visible polymorphism and crypsis should reduce the frequency of attack and corresponding mantle retraction. In order to determine whether T. crocea is polymorphic and/or cryptic, samples (n = 573) from Tioman Island, Malaysia, were surveyed and photographed. Classification of images into categories of size and mantle colour/pattern demonstrates that T. crocea is colour/pattern polymorphic and morph frequency is size-dependent. Eight morphs were identified, but there also existed considerable intra-morph variation. Morphs with brown and/or and green pigments dominated the larger clam size category (>8 cm). Furthermore, red/blue/green (RGB) values extracted from a subset (n = 93) of digital images of T. crocea showed significant positive correlations between mantle and substrate colours (blue, r = 0.641; green, r = 0.540; red, r = 0.528), indicating background matching (crypsis).

Keywords

Background-matching Boring clam Camouflage Colouration Polymorphism Predation 

References

  1. Alcazar, S. N., 1986. Observations on predators of giant clams (Bivalvia: Family Tridacnidae). Silliman Journal 33(1–4): 54–57.Google Scholar
  2. Cuthill, I. C., M. Stevens, J. Sheppard & T. Maddocks, 2005. Disruptive colouration and background pattern matching. Nature 434: 72–74.PubMedCrossRefGoogle Scholar
  3. Douglas, R. H. & C. W. Hawryshyn, 1990. Behavioural studies of fish vision: an analysis of vial capabilities. In Douglas, R. H. & M. B. A. Djamgoz (eds), The Visual System of Fish. Chapman & Hall, London: 373–418.Google Scholar
  4. Endler, J. A., 1978. A predator’s view of animal colour patterns. Evolutionary Biology 11: 319–364.Google Scholar
  5. Endler, J. A., 1984. Progressive background matching in moths, and a quantitative measure of crypsis. Biological Journal of the Linnean Society 22: 187–231.CrossRefGoogle Scholar
  6. Fankboner, P. V., 1981. Siphonal eyes of giant clams (Bivalvia: Tridacnidae) and their relationship to adjacent zooxanthellae. The Veliger 23(3): 245–249.Google Scholar
  7. Goodhart, C. B., 1987. Why are some snails visibly polymorphic, and others not? Biological Journal of the Linnean Society 31: 35–58.CrossRefGoogle Scholar
  8. Griffiths, D. J., H. Winsor & T. Luong-Van, 1992. Iridophores in the mantle of giant clams. Australian Journal of Zoology 40: 319–326.CrossRefGoogle Scholar
  9. Hogarth, P. J., 1978. Variation in carapace pattern of juvenile Carcinus maenas. Marine Biology 44: 337–343.CrossRefGoogle Scholar
  10. Huang, H., P. A. Todd & D. C. J. Yeo, 2007. Inter- and intraspecific variations in the facial colours of mangrove Perisesarma crabs (Crustacea: Brachyura: Sesarmidae). Hydrobiologia 598: 361–371.CrossRefGoogle Scholar
  11. Jasmi, A., 1999. An introduction on Pulau Tioman. Raffles Bulletin of Zoology Supplement 6: 3–4.Google Scholar
  12. Jeffrey, S. W. & F. T. Haxo, 1968. Photosynthetic pigments of symbiotic dinoflagellates (zooxanthellae) from corals and clams. Biological Bulletin 135(1): 149–165.CrossRefGoogle Scholar
  13. Jones, J. S., B. H. Leith & P. Rawlings, 1977. Polymorphism in Cepaea: a problem with too many solutions? Annual Reviews in Ecological System 8: 109–143.CrossRefGoogle Scholar
  14. Kiltie, R. A. & A. F. Laine, 1992. Visual textures, machine vision and animal camouflage. Trends in Ecology and Evolution 7: 163–166.CrossRefGoogle Scholar
  15. Ling, H., P. A. Todd, L. M. Chou, V. B. Yap & B. Sivaloganathan, 2008. The defensive role of scutes in juvenile fluted giant clams (Tridacna squamosa). Journal of Experimental Marine Biology and Ecology 359: 77–83.CrossRefGoogle Scholar
  16. Lloyd, D. G., 1984. Variation strategies of plants in heterogeneous environments. Biological Journal of the Linnaean Society 21: 357–385.CrossRefGoogle Scholar
  17. Lucas, J. S., 1988. Giant clams: description, distribution and life history. In Copland, J. W. & J. S. Lucas (eds), Giant clams in Asia and the Pacific. Australian Centre for International Agricultural Research Monographs No. 9, Canberra: 21–32.Google Scholar
  18. Lucas, J. S., 1994. The biology, exploitation and mariculture of giant clams (Tridacnidae). Reviews in Fisheries Science 2: 181–223.CrossRefGoogle Scholar
  19. Mercier, A. & J. F. Hamel, 1996. The secret of the giant clam. Freshwater and Marine Aquarium 19(5): 112–113.Google Scholar
  20. Merilaita, S., 2003. Visual background complexity facilitates the evolution of camouflage. Evolution 57(6): 1248–1254.PubMedGoogle Scholar
  21. Merilaita, S. & J. Lind, 2005. Background-matching and disruptive coloration and the evolution of cryptic colouration. Proceedings of the Royal Society of London, Series B 272: 665–670.CrossRefGoogle Scholar
  22. Merilaita, S. & G. D. Ruxton, 2009. Optimal apostatic selection: how should predators adjust to variation in prey frequencies? Animal Behaviour 77: 239–245.CrossRefGoogle Scholar
  23. Merilaita, S., A. Lyytinen & J. Mappes, 2001. Selection for cryptic coloration in a visually heterogeneous habitat. Proceedings of the Royal Society of London, Series B 268: 1925–1929.CrossRefGoogle Scholar
  24. Mingoa-Licuanan, S. S. & E. D. Gomez, 2002. Giant clam conservation in Southeast Asia. Tropical Coasts 3: 24–56.Google Scholar
  25. Nicol, J. A. C., 1989. The eyes of fishes. Oxford University Press, New York.Google Scholar
  26. Norton, J. H., M. A. Shepherd, H. M. Long & W. K. Fitt, 1992. The zooxanthellal tubular system in the giant clam. Biological Bulletin 183(3): 503–506.CrossRefGoogle Scholar
  27. Palma, A. T. & R. S. Steneck, 2001. Does variable coloration in juvenile marine crabs reduce the risk of predation? Ecology 82: 2961–2967.Google Scholar
  28. Papadakis, S. E., S. Abdul-Malek, R. E. Kamden & K. L. Yam, 2000. A versatile and inexpensive technique for measuring colour of foods. Food Technology 54: 48–51.Google Scholar
  29. Purchon, R. D. & D. E. A. Purchon, 1981. The marine shelled mollusca of West Malaysia and Singapore Part 1. General introduction and an account of the collecting stations. Journal of Mollusc Studies 47: 290–312.Google Scholar
  30. Richter, C., H. Roa-Quiaoit, C. Jantzen, M. Al-Zibdah & M. Kochzius, 2008. Collapse of a new living species of giant clam in the Red Sea. Current Biology 18: 1–6.CrossRefGoogle Scholar
  31. Rosewater, J., 1965. The family Tridacnidae in the Indo-Pacific. Info-Pacific Mollusca 1(6): 347–396.Google Scholar
  32. Ruxton, G. D., T. N. Sherratt & M. P. Speed, 2004. Avoiding attack—the evolutionary ecology of crypsis, warning signals and mimicry. Oxford University Press, New York.Google Scholar
  33. Schneider, J. A. & D. O. Foighil, 1999. Phylogeny of giant clams (Cardiidae: Tridacninae) based on partial mitochondrial 16S rDNA gene sequences. Molecular Phylogenetics and Evolution 13(1): 59–66.PubMedCrossRefGoogle Scholar
  34. Schoenberg, D. A. & R. K. Trench, 1980. Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. II. Morphological variation in Symbiodinium microadriaticum. Proceedings of the Royal Society of London, Series B 207(1169): 429–444.CrossRefGoogle Scholar
  35. Stasek, C. R., 1961. The form, growth and evolution of the Tridacnidae (giant clams). Archives de Zoologie Experimentale et Generale 101: 1–40.Google Scholar
  36. Sutton, D. C. & O. Hoegh-Guldberg, 1990. Host-zooxanthella interactions in four temperate marine invertebrate symbioses: assessment of effect of host extracts on symbionts. Biological Bulletin 178(2): 175–186.CrossRefGoogle Scholar
  37. Tan, S. H. & Z. Yasin, 2000. The reproduction cycle of Tridacna squamosa and Tridacna maxima in Rengis Island (Tioman Island), Malaysia. Journal of Shellfish Research 19(2): 963–966.Google Scholar
  38. Todd, P. A., R. J. Ladle, N. Lewin-Koh & L. M. Chou, 2004. Genotype × environment interactions in transplanted clones of the massive corals Favia speciosa and Diploastrea heliopora. Marine Ecology Progress Series 271: 167–182.CrossRefGoogle Scholar
  39. Todd, P. A., R. J. Ladle, R. A. Briers & A. Brunton, 2005. Quantifying two-dimensional dichromatic patterns using a photographic technique: case study on the shore crab (Carcinus maenas, L.). Ecological Research 20(4): 497–502.CrossRefGoogle Scholar
  40. Todd, P. A., R. A. Briers, R. J. Ladle & F. Middleton, 2006. Phenotype-environment matching in the shore crab (Carcinus maenas). Marine Biology 148: 1357–1367.CrossRefGoogle Scholar
  41. Trench, R. K., D. S. Wethey & J. W. Porter, 1981. Observations on the symbiosis with zooxanthellae among the Tridacnidae (Mollusca, Bivalvia). Biological Bulletin 161(1): 180–198.CrossRefGoogle Scholar
  42. Weingarten, R. A., 1991. Tridacna—the giant clam. Freshwater and Marine Aquarium 14(2): 101–106.Google Scholar
  43. Wente, W. H. & J. B. Phillips, 2003. Fixed green and brown color morphs and a novel color-changing morph of the Pacific tree frog Hyla regilla. American Naturalist 162: 461–473.PubMedCrossRefGoogle Scholar
  44. Wilkens, L. A., 1986. The visual system of the giant clam tridacna: behavioral adaptations. Biological Bulletin 170(3): 393–408.CrossRefGoogle Scholar
  45. Yasin, Z. & S. H. Tan, 2000. Quantitative and qualitative effects of light on the distribution of giant clams at the Johore Islands in South China Sea. Phuket Marine Biological Center Special Publications 21(1): 113–118.Google Scholar
  46. Yonge, C. M., 1975. Giant clams. Scientific American 232: 96–105.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Marine Biology Laboratory, Department of Biological SciencesNational University of SingaporeSingaporeSingapore

Personalised recommendations