Advertisement

Hydrobiologia

, Volume 632, Issue 1, pp 359–363 | Cite as

Changes of phytoplankton communities in Lakes Naivasha and Oloidien, examples of degradation and salinization of lakes in the Kenyan Rift Valley

  • A. BallotEmail author
  • K. Kotut
  • E. Novelo
  • L. Krienitz
Short research note

Abstract

Increasing degradation of the water quality, caused by overuse and salinization, leads to considerable changes of the phytoplankton composition in Kenyan Rift Valley lakes. Exemplarily, the phytoplankton communities and biomasses of deteriorating freshwater Lake Naivasha and salinizing Lake Oloidien were studied between 2001 and 2005, accompanied by physico-chemical measurements (pH, total phosphorus and nitrogen, alkalinity, conductivity). Over the last three decades, the ecology of these two water basins has been subjected to dramatic changes, caused by excessive use of water and catchment area by man. In L. Naivasha a shift in the dominance of coccoid cyanobacteria towards dominance of Chlorophyceae (Botryococcus terribilis) was observed. Lake Oloidien exhibited a shift in the dominance of coccoid Chlorophyceae towards dominance of cyanobacteria (Arthrospira fusiformis, Anabaenopsis elenkinii). Phytoplankton findings and chemical data demonstrate that L. Naivasha has developed towards a eutrophic freshwater lake while L. Oloidien has progressed towards a hypereutrophic alkaline-saline lake.

Keywords

Lake Naivasha Lake Oloidien Eutrophication Salinization 

Notes

Acknowledgments

The authors thank the authorities of the Republic of Kenya for providing research permission (No. MOEST 13/001/31 C90). We are grateful to the German Federal Ministry of Education and Research for financial support (grant BIOLOG 01LC0001).

Supplementary material

10750_2009_9847_MOESM1_ESM.doc (28 kb)
Supplementary material 1 (DOC 28 kb)
10750_2009_9847_MOESM2_ESM.doc (38 kb)
Supplementary material 2 (DOC 38 kb)
10750_2009_9847_MOESM3_ESM.doc (188 kb)
Supplementary material 3 (DOC 188 kb)

References

  1. Ballot, A., L. Krienitz, K. Kotut, C. Wiegand, J. S. Metcalf, G. A. Codd & S. Pflugmacher, 2004. Cyanobacteria and cyanobacterial toxins in three alkaline Rift Valley lakes of Kenya-lakes Bogoria, Nakuru and Elmenteita. Journal of Plankton Research 26: 925–935.CrossRefGoogle Scholar
  2. Beadle, L. C., 1932. Scientific results of the Cambridge expedition to the East African lakes, 1930–1. 4. The waters of some East African lakes in relation to their fauna and flora. Journal of the Linnean Society of London Zoology 38: 157–211.CrossRefGoogle Scholar
  3. Becht, R. & D. M. Harper, 2002. Towards an understanding of human impact upon the hydrology of Lake Naivasha, Kenya. Hydrobiologia 488: 1–11.CrossRefGoogle Scholar
  4. Becker, V., V. L. M. Huszar, L. Naselli-Flores & J. Padisák, 2008. Phytoplankton equilibrium phases during thermal stratification in a deep subtropical reservoir. Freshwater Biology 53: 592–963.CrossRefGoogle Scholar
  5. Beede, D. K., 2005. Assessment of water quality and nutrition for dairy cattle. Proceedings of Mid-South ruminant Nutrition Conference, April 27–28. Arlington: 1–19.Google Scholar
  6. Bergner, A. G. N., M. H. Trauth & B. Bookhagen, 2003. Paleoprecipitation estimates for the Lake Naivasha basin (Kenya) during the last 175 k.y. using a lake-balance model. Global and Planetary Change 36: 117–136.CrossRefGoogle Scholar
  7. Evans, J. H., 1962. Some records and forms of algae in Central East Africa. Hydrobiologia 20: 59–86.Google Scholar
  8. Everard, M. & D. M. Harper, 2002. Towards the sustainability of the Lake Naivasha Ramsar site and its catchment. Hydrobiologia 488: 191–203.CrossRefGoogle Scholar
  9. Gaudet, J. J. & J. M. Melack, 1981. Major ion chemistry in a tropical African lake basin. Freshwater Biology 11: 309–333.CrossRefGoogle Scholar
  10. Haande, S., A. Ballot, T. Rohrlack, J. Fastner, C. Wiedner & B. Edvardsen, 2007. Diversity of M. aeruginosa isolates (Chroococcales, Cyanobacteria) from East-African water bodies. Archives of Microbiology 188: 15–25.PubMedCrossRefGoogle Scholar
  11. Hammer, U. T., 1986. Saline ecosystems of the world. Dr. W. Junk Publisher, Dordrecht.Google Scholar
  12. Harper, D. M., 2006. The sacrifice of Lake Naivasha. Swara, East African Wild Life Society 29: 28–37.Google Scholar
  13. Harper, D. M., G. Phillips, A. Chilvers, N. Kitaka & K. Mavuti, 1993. Eutrophication prognosis of Lake Naivasha, Kenya. Verhandlungen der Internationalen Vereinigung für Limnologie 25: 861–865.Google Scholar
  14. Hubble, D. S. & D. M. Harper, 2002. Phytoplankton community structure and succession in the column of Lake Naivasha, Kenya: a shallow tropical lake. Hydrobiologia 488: 89–98.CrossRefGoogle Scholar
  15. Jenkin, P., 1929. Biology of lakes in Kenya. Nature 124: 574.CrossRefGoogle Scholar
  16. Kalff, J. & S. Watson, 1986. Phytoplankton and its dynamics in two tropical lakes: a tropical and temperate zone comparison. Hydrobiologia 138: 161–176.CrossRefGoogle Scholar
  17. Kitaka, N., D. M. Harper & K. M. Mavuti, 2002. Phosphorus inputs to Lake Naivasha, Kenya, from its catchment and the trophic state of the lake. Hydrobiologia 488: 73–80.CrossRefGoogle Scholar
  18. Komárkova, J. & R. Tavera, 2003. Steady state of phytoplankton assemblage in the tropical Lake Catemaco (México). Hydrobiologia 502: 187–196.CrossRefGoogle Scholar
  19. Lind, E. M., 1968. Notes on the distribution of phytoplankton in some Kenya waters. European Journal of Phycology 3: 481–493.CrossRefGoogle Scholar
  20. Melack, J. M., 1988. Primary producer dynamics associated with evaporative concentration in a shallow, equatorial soda lake (Lake Elmenteita, Kenya). Hydrobiologia 158: 1–14.CrossRefGoogle Scholar
  21. Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502: 395–403.CrossRefGoogle Scholar
  22. Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóne-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.CrossRefGoogle Scholar
  23. Richardson, J. L., 1968. Diatoms and lake typology in East and Central Africa. Internationale Revue der gesamten Hydrobiologie 53: 299–338.CrossRefGoogle Scholar
  24. Salas, H. J. & P. Martino, 1991. A simplified phosphorus trophic state model for warm-water tropical lakes. Water Research 25: 341–350.CrossRefGoogle Scholar
  25. Sommer, U., J. Padisák, C. S. Reynolds & P. Juhász-Nagy, 1993. Hutchinson’s heritage: the diversity disturbance relationships in phytoplankton. Hydrobiologia 249: 1–7.CrossRefGoogle Scholar
  26. Talling, J. F. & I. B. Talling, 1965. The chemical composition of African lake water. Internationale Revue der Gesamten Hydrobiologie 50: 421–463.CrossRefGoogle Scholar
  27. Uku, J. N. & K. M. Mavuti, 1994. Comparative limnology, species diversity and biomass relationship of zooplankton and phytoplankton in five freshwater lakes in Kenya. Hydrobiologia 272: 251–258.CrossRefGoogle Scholar
  28. Vareschi, E., 1982. The ecology of Lake Nakuru (Kenya). III. Abiotic factors and primary production. Oecologia 55: 81–101.CrossRefGoogle Scholar
  29. Verschuren, D., 1999. Sedimentation controls on the preservation and time resolution of climate-proxy records from shallow fluctuating lakes. Quaternary Science Reviews 18: 821–837.CrossRefGoogle Scholar
  30. Verschuren, D., J. Tibby, K. Sabbe & N. Roberts, 2000. Effects of depth, salinity, and substrate on the invertebrate community of a fluctuating tropical lake. Ecology 81: 164–182.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Leibniz-Institute of Freshwater Ecology and Inland FisheriesStechlinGermany
  2. 2.Plant and Microbial Sciences DepartmentKenyatta University NairobiNairobiKenya
  3. 3.Facultad de CienciasUniversidad Nacional Autónoma de México. AP. 70-474CU, Coyoacán, MéxicoMéxico

Personalised recommendations