, Volume 632, Issue 1, pp 167–175 | Cite as

Composition of native and introduced mtDNA lineages in Coregonus sp. in two Austrian lakes: evidence for spatio-temporal segregation of larvae?

  • B. Pamminger-LahnsteinerEmail author
  • S. Weiss
  • K. A. Winkler
  • J. Wanzenböck
Primary research paper


We hypothesized that there is spatio-temporal genetic (mtDNA) structure of native and introduced larval whitefish (Coregonus sp.) in two Austrian lakes (Traunsee and Hallstättersee). Larval whitefish were sampled from 12 sites in each lake and screened for variation in the mtDNA NADH-1 gene. Based on the sequencing of adult fish together with existing GenBank sequences, an RFLP protocol was developed to assign haplotypes from larval samples into one of two divergent lineages. All but one site (pelagic) in Traunsee contained both haplotypes, thus there was no support for spatial segregation of mtDNA groups in that lake. However, weekly sampling from December to May in Traunsee revealed a temporal pattern, with the native haplotypes dominating in December and January before the appearance of the introduced Baltic clade. In Hallstättersee, only three of the 12 sites sampled revealed haplotypes from the introduced clade and thus spatial segregation seems operative on that lake. Our results imply that differences in the spawning ecology of the two groups maintain sufficient reproductive isolation to be reflected in distinct larval occurrence in space and time highly consistent with genetic differences on the mtDNA level. If the two lineages were highly introgressed, we would expect to find little or no correspondence between spatio-temporal patterns in larval distribution and the differentiated mtDNA lineages.


Coregonids Coregonus renke Coregonus maraena RFLP NADH1-gene NADH3-gene 



The Institute for Limnology in Mondsee—director T. Weisse—provided the initial financial support and spatial facilities. Additional support was provided by The Austria Commission for Interdisciplinary Ecological Studies (KIÖS) of the Austrian Academy of Sciences, the Stiftungs- und Förderungsgesellschaft of the Paris-Lodron-University Salzburg, and the Austrian Science Fund (FWF L229-B12). The genetic aspects of the project were completed at the Institute of Zoology, KF-University Graz. The authors are grateful to the staff of both institutes especially to K. Maier, J. Schmidt, M. Pöckl, S. Sušnik, B. Egger, N. Duftner, St. Kölblmüller, E. Lerceteau, T.G. Kopun for their never-ending helpfulness and patience.


  1. Benda, H., 1949. Der Riedling des Traunsees. Österreichs Fischerei 10: 219–221.Google Scholar
  2. Chambers, R. C. & E. A. Trippel, 1997. Early Life History and Recruitment in Fish Populations. Chapmann & Hall, London, Fish and Fisheries Series 21: 596 pp.Google Scholar
  3. Clement, M., D. Posada & K. A. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1660.PubMedCrossRefGoogle Scholar
  4. Corpet, F., 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research 16: 10881–10890.PubMedCrossRefGoogle Scholar
  5. Diem, H., 1964. Beiträge zur Fischerei Nordtirols. B. Die Fischerei in den natürlichen Gewässern der Vergangenheit. Veröffentlichungen des Museums Ferdinandeum 43: 5–132.Google Scholar
  6. Douglas, M. R. & P. C. Brunner, 2002. Biodiversity of central Alpine Coregonus (Salmoniformes): Impact of one-hundred years of management. Ecological Applications 12: 154–172.CrossRefGoogle Scholar
  7. Gassner, H., D. Zick, J. Wanzenböck, B. Lahnsteiner & G. Tischler, 2003. Die Fischartengemeinschaften der großen Österreichischen Seen – Vergleich zwischen historischer und aktueller Situation, fischökologischer Seentypen. Schriftenreihe des BAW, Wien 18: 163 pp.Google Scholar
  8. Gassner, H., D. Zick, G. Bruschek, I. Frey, K. Mayrhofer & A. Jagsch, 2006. Die Wassergüte ausgewählter Seen des oberösterreichischen und steirischen Salzkammergutes 2001–2005. Schriftenreihe des BAW, Wien 24: 139 pp.Google Scholar
  9. Haempel, O., 1916. Zur Fischereibiologie des Hallstätter Sees. Österreichische Fischereizeitung 8(14): 105–118.Google Scholar
  10. Haempel, O., 1930. Fischereibiologie der Alpenseen. In Die Binnengewässer 10. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart: 253 pp.Google Scholar
  11. Hassan, Y., 2000. Comparison of life history strategies of European whitefish Coregonus lavaretus (L.) in five Austrian prealpine lakes (Mond-, Waller-, Irr-, Hallstätter- and Traunsee). Masters thesis at the University Salzburg: 59 pp.Google Scholar
  12. Heikinheimo, O., M. Miinalainen & H. Peltonen, 2000. Diet, growth and competitive abilities of sympatric whitefish forms in a dense introduced population results of a stocking experiment. Journal of Fish Biology 57: 808–827.CrossRefGoogle Scholar
  13. IUCN. 1997. Fishing for a Living—The Ecology and Economics of Fishponds in Central Europe. IUCN, Gland, Switzerland and Cambridge, UK: 184 pp.Google Scholar
  14. Jagsch, A., 1992. Erfahrungen bei der Bewirtschaftung der Salzkammergutseen. Öko - Text 1: 55–72.Google Scholar
  15. Karjalainen, J., H. Helminen, A. Huusko, H. Huuskonen, T. J. Marjomäki, J.-P. Pääkkönen, J. Sarvala & M. Viljanen, 2002. Littoral-pelagic distribution of newly hatched vendace and European whitefish larvae in Finnish lakes. Archiv für Hydrobiologie, Special Issues: Advances in Limnology 57: 367–382.Google Scholar
  16. Kirchhofer, A. & T. J. Lindt-Kirchhofer, 1998. Growth and development during early life stages of Coregonus lavaretus from three lakes in Switzerland. Archiv für Hydrobiologie, Special Issues: Advances in Limnology 50: 49–59.Google Scholar
  17. Kohlmann, K., J. Kempter, P. Kersten & J. Sadowska, 2007. Haplotype variability at the mitochondrial ND-1 gene region of Coregonus lavaretus from Polish lakes. Archiv für Hydrobiologie, Special Issues: Advances in Limnology 60: 47–57.Google Scholar
  18. Kottelat, M., & J. Freyhof, 2007. Handbook of European Freshwater Fishes. Kottelat, Cornol, Switzerland and Freyhof, Berlin, Germany: 646 pp.Google Scholar
  19. Kumar, S., K. Tamura, I. B. Jakobsen & M. Nei, 2001. MEGA2. Molecular evolutionary genetics analysis software. Bioinformatics 17: 1244–1245.PubMedCrossRefGoogle Scholar
  20. Lahnsteiner, B. & J. Wanzenböck, 2004. Variability in the spatio-temporal distribution of larval European whitefish (Coregonus lavaretus (L.)) in two Austrian lakes. Annales Zoologici Fennici 41: 75–83.Google Scholar
  21. Lu, G. & L. Bernatchez, 1999. Correlated trophic speciation and genetic divergence in sympatric lake whitefish ecotypes (Coregonus clupeaformis): support for the ecological speciation hypothesis. Evolution 53(5): 1491–1505.CrossRefGoogle Scholar
  22. Luczynski, M. & B. Ritterbusch-Nauwerck, 1995. Biochemical genetic study of European whitefish (Coregonus lavaretus) in Lake Mondsee, Upper Austria. Aquatic Sciences 57(2): 127–135.CrossRefGoogle Scholar
  23. Næsje, T. F., O. T. Sandlund & B. Jonsson, 1986. Habitat use and growth of age-0 whitefish, Coregonus lavaretus, and cisco, Coregonus albula. Environmental Biology of Fishes 15(4): 309–314.Google Scholar
  24. Neresheimer, E. & F. Ruttner, 1928. Eine fischereibiologische Untersuchung am Traunsee. Zeitschrift für Fischerei 18: 537–564.Google Scholar
  25. Nesbø, C. L., T. Fossheim, L. A. Vøllestad & K. S. Jakobsen, 1999. Genetic divergence and phylogeographic relationships among European perch populations reflect glacial refugia and postglacial colonization. Molecular Ecology 8: 1387–1404.PubMedCrossRefGoogle Scholar
  26. Østbye, K., L. Bernatchez, T. F. Næsje, K.-J. M. Himberg & K. Hindar, 2005. Evolutionary history of the European whitefish Coregonus lavaretus (L.) species complex as inferred from mtDNA phylogeography and gill-raker numbers. Molecular Ecology 14: 4371–4387.PubMedCrossRefGoogle Scholar
  27. Rhulé, C. & T. Kindle, 1992. Morphological comparison of river-spawning whitefish of the Alpine Rhine with the whitefish of Lake Constance. Polskie Archiwum Hydrobiologii 39: 403–408.Google Scholar
  28. Ritterbusch-Nauwerck, B. & F. Lahnsteiner, 2005. Effects of stocking on morphological and meristic characteristics on native coregonid populations in four Austrian lakes. Zeitschrift für Fischkunde 7(2): 101–111.Google Scholar
  29. Salojärvi, K. & A. Huusko, 1990. Results of whitefish, Coregonus lavaretus L., fingerling stocking in the lower part of the Sotkamo water course, northern Finland. Aquaculture and Fisheries Management 21: 229–244.Google Scholar
  30. Salojärvi, K. & A. Mutenia, 1992. Effects of fingerling stocking on recruitment in the Lake Inari whitefish (Coregonus lavaretus L. s.l.) fishery. In Cowx, I. G. (ed.), Rehabilitation of Inland Fisheries. Cornwall, Hartnolls, Bodmin: 302–313.Google Scholar
  31. Sambrook, J., E. F. Fritsch & T. Maniatis, 1989. Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  32. Šusta, J., 1898. Fünf Jahrhunderte der Teichwirtschaft zu Wittingau. Ein Beitrag zur Geschichte der Fischzucht mit besonderer Berücksichtigung der Gegenwart. Herrcke & Lebeling, Stettin: 1–232.Google Scholar
  33. Turkowski, K., 2002. Economic aspects of vendace and whitefish management in four lakes in northern Poland. Archiv für Hydrobiologie, Special Issues: Advances in Limnology 57: 143–156.Google Scholar
  34. Wanzenböck, J., H. Gassner, B. Lahnsteiner, G. Hauseder & Y. Hassan, 2002a. Ecology of European whitefish Coregonus lavaretus in two Austrian lakes in relation to fisheries management and lake productivity. In Cowx, I. G. (ed.), Management and Ecology of Lake and Reservoir Fisheries. Blackwell Science Ltd, Oxford: 58–69.CrossRefGoogle Scholar
  35. Wanzenböck, J., H. Gassner, B. Lahnsteiner, G. Hauseder, Y. Hassan, K. Maier, G. Tischler, G. Fischer, C. Doblander & G. Köck, 2002b. Ecological integrity assessment of lakes using fish communities: an example from Traunsee exposed to intensive fishing and to effluents from the soda industry. In Schmidt, R. & M. T. Dokulil (eds), Water, Air, and Soil Pollution: Focus 2. Springer, Netherlands: 227–248.Google Scholar
  36. Weiss, S., H. Persat, R. Eppe, C. Schlötterer & F. Uiblein, 2002. Complex patterns of colonization and refugia revealed for European grayling Thymallus thymallus, based on complete sequencing of the mtDNA control region. Molecular Ecology 11: 1393–1407.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • B. Pamminger-Lahnsteiner
    • 1
    Email author
  • S. Weiss
    • 2
  • K. A. Winkler
    • 2
  • J. Wanzenböck
    • 1
  1. 1.Austrian Academy of SciencesInstitute for LimnologyMondsee Austria
  2. 2.Institute for ZoologyKarl-Franzens-UniversityGrazAustria

Personalised recommendations