Hydrobiologia

, 631:121

A multi-proxy Late-glacial palaeoenvironmental record from Lake Bled, Slovenia

  • Maja Andrič
  • Julieta Massaferro
  • Ueli Eicher
  • Brigitta Ammann
  • Markus Christian Leuenberger
  • Andrej Martinčič
  • Elena Marinova
  • Anton Brancelj
PALAEOLIMNOLOGY

Abstract

This study investigates the palaeoecological record (δ18O, δ13C, pollen, plant macrofossils, chironomids and cladocera) at Lake Bled (Slovenia) sedimentary core to better understand the response of terrestrial and aquatic ecosystems to Late-glacial climatic fluctuations. The multi-proxy record suggests that in the Oldest Dryas, the landscape around Lake Bled was rather open, presumably because of the cold and dry climate, with a trend towards wetter conditions, as suggested by an increase in tree pollen as well as chironomid and cladocera faunas typical for well-oxygenated water. Climatic warming at the beginning of the Late-glacial Interstadial at ca. 14,800 cal yr BP is suggested by an increase in the δ18O value, the appearance of Betula and Larix pollen and macrofossils, and a warmth-adapted chironomid fauna. With further warming at ca. 13,800 cal yr BP, broad-leaved tree taxa (Quercus, Tilia, Ulmus), Artemisia, and Picea increase, whereas chironomid data (Cricotopus B) suggest lowering of lake levels. After 12,800 cal yr BP (and throughout the Younger Dryas), the climate was colder and drier, as indicated by lower δ18O values, decline of trees, increase of microscopic charcoal, xerophytes and littoral chironomids. A warmer climate, together with the spread of broad-leaved tree taxa and a deeper, more productive lake, mark the onset of the Late-glacial/Holocene transition. These results suggest that terrestrial and aquatic ecosystems at Lake Bled were very dynamic and sensitive to Late-glacial climatic fluctuations.

Keywords

Late-glacial Lake Bled Chironomids Cladocera Plant macrofossils Stable isotopes Pollen 

Supplementary material

10750_2009_9806_MOESM1_ESM.doc (33 kb)
Supplementary material 1 (DOC 33 kb)

References

  1. Atanassova, J. & I. Stefanova, 2003. Late-glacial vegetational history of Lake Kremensko-5 in the northern Pirin Mountains, southwestern Bulgaria. Vegetation History and Archaeobotany 12: 1–6.CrossRefGoogle Scholar
  2. Beijerinck, W., 1947. Zadenatlas der nederlandsche Flora. H. Veeman & Zonnen, Wageningen.Google Scholar
  3. Bengtsson, L. & M. Ennell, 1986. Chemical analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, New York: 423–451.Google Scholar
  4. Bennett, K. D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132: 155–170.CrossRefGoogle Scholar
  5. Bennett, K. D., 1998. Documentation for PSIMPOLL 3.00 and PSCOMB 1.03: C programs for plotting pollen diagrams and analysing pollen data. http://chrono.qub.ac.uk/psimpoll/psimpoll.html.
  6. Bennett, K. D. & K. J. Willis, 2002. Pollen. In Smol, J. P., H. J. Birks & W. M. Last (eds), Tracking Environmental Changes Using Lake Sediments. Volume 3. Terrestrial, Algal and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht: 5–32.Google Scholar
  7. Birks, H., 2002. Plant macrofossils. In Smol, J. P., H. J. Birks & W. M. Last (eds), Tracking Environmental Changes Using Lake Sediments. Volume 3. Terrestrial, Algal and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht: 49–74.Google Scholar
  8. Birks, H., 2003. The importance of plant macrofossils in the reconstruction of Late-glacial vegetation and climate: examples from Scotland, western Norway, and Minnesota, USA. Quaternary Science Reviews 22: 453–473.CrossRefGoogle Scholar
  9. Birks, H. J. B. & A. D. Gordon, 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press, London.Google Scholar
  10. Björck, S., M. J. C. Walker, L. C. Cwynar, S. Johnsen, K. L. Knudsen, J. J. Lowe, B. Wolfarth & INTIMATE members, 1998. An event stratigraphy for the Last Termination in the North Atlantic region based on Greenland ice-core record: a proposal by the INTIMATE group. Journal of Quaternary Science 13: 283–292.CrossRefGoogle Scholar
  11. Bozilova, E., M. Filipova, L. Filipovich & S. Tonkov, 1996. Bulgaria. In Berglund, B. E., H. J. B. Birks, M. Ralska-Jasiewiczowa & H. E. Wright (eds), Palaeoecological Events During the Last 15,000 Years: Regional Syntheses of Palaeoecological Studies of Lakes and Mires in Europe. Wiley, Chichester: 701–728.Google Scholar
  12. Brancelj, A., 1991. A model of the zooplankton production assessed in Daphnia hyalina (Crustacea: Cladocera) in the lake Blejsko jezero. Ph.D. Dissertation. University of Ljubljana, Department of Biology: 144 pp (in Slovene).Google Scholar
  13. Brancelj, A., M. Šiško, G. Muri, P. Appleby, A. Lami, E. Shilland, N. L. Rose, C. Kamenik, S. J. Brooks & J. A. Dearing, 2002. Lake Jezero v Ledvici (NW Slovenia)—changes in sediment records over the last two centuries. Journal of Paleolimnology 28: 47–58.CrossRefGoogle Scholar
  14. CALIB 5.0 Website, 2006. http://calib.qub.ac.uk/.
  15. Cheddadi, R., G. G. Vendarmin, T. Litt, L. François, M. Kageyama, S. Lorentz, J.-M. Laurent, J.-L. de Beaulieu, L. Sadori, A. Jost & D. Lunt, 2006. Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Global Ecology and Biogeography 15: 271–282.Google Scholar
  16. Clark, R. L., 1982. Point count estimation of charcoal in pollen preparations and thin sections of sediments. Pollen et Spores 24: 523–532.Google Scholar
  17. Cranston, P. S., 1997. Identification Guide to the Chironomidae of New South Wales. Australian Water Technologies Pty Ltd., West Ryde.Google Scholar
  18. Culiberg, M., 1991. Late Glacial Vegetation in Slovenia [Kasnoglacialna vegetacija v Sloveniji]. Dela SAZU IV/29, SAZU, Ljubljana.Google Scholar
  19. Čarni, A., A. Marinček, A. Seliškar & M. Zupančič, 2003. Vegetation map of Slovenian forest plant associations, Institute of Biology, Scientific Research Centre of the Slovenian Academy of Sciences and Arts. http://bijh.zrc-sazu.si/bio/si/zbirke/400/400.asp.
  20. Davis, M. B., 1976. Erosion rates and land-use history in Southern Michigan. Environmental Conservation 3: 139–148.CrossRefGoogle Scholar
  21. Dearing, A. J. & I. D. L. Foster, 1986. Lake sediments and palaeohydrological studies. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, New York: 67–90.Google Scholar
  22. Digerfeldt, G., 1986. Studies on past lake-level fluctuations. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, New York: 127–143.Google Scholar
  23. Dolenec, T., J. Pezdič, B. Ogorelec & M. Mišič, 1984. Izotopska sestava kisika in ogljika v recentnem sedimentu iz Blejskega jezera in v pleistocenski jezerski kredi Julijskih Alp [The isotopic composition of oxygen and carbon of the recent sediment from the Bled Lake and of the Pleistocene lacustrine chalk from the Julian Alps]. Geologija 27: 161–170.Google Scholar
  24. Eicher, U., 1987. Die spätglazialen sowie die frühpostglazialen Klimaverhältnisse im Bereiche der Alpen: Sauerstoffisotopenkurven kalkhaltiger Sedimente. Geographica Helvetica 42: 99–104.Google Scholar
  25. Feurdean, A., B. Wohlfarth, L. Björkman, I. Tantau, O. Bennike, K. J. Willis, S. Farcas & A. M. Robertsson, 2007. The influence of refugial population on Lateglacial and early Holocene vegetational changes in Romania. Review of Palaeobotany and Palynology 145: 305–320.CrossRefGoogle Scholar
  26. Feurdean, A., S. Klotz, S. Brewer, V. Mosbrugger, T. Tămas & B. Wohlfarth, 2008. Lateglacial climate development in NW Romania—Comparative results from three quantitative pollen-based methods. Palaeogeography, Palaeoclimatology, Palaeoecology 265: 121–133.CrossRefGoogle Scholar
  27. Finsinger, W., C. Bellis, S. E. P. Blockley, U. Eicher, M. Leuenberger, A. F. Lotter & B. Ammann, 2008. Temporal patterns in lacustrine stable isotopes as evidence for climate change during the late glacial in the Southern European Alps. Journal of Palaeolimnology, Open Access. doi 10.1007/s10933-008-9205-7.
  28. Geological Map of Slovenia, 1993. 1: 500 000, Ljubljana, Geodetski zavod Slovenije.Google Scholar
  29. Grimm, E., 1991 of Tilia and Tilia Graph. Illinois State Museum.Google Scholar
  30. Grimšičar, A., 1955. Zapiski o geologiji Bleda. Notes about the geology of Bled area. Geologija 3: 220–225.Google Scholar
  31. Heiri, O. & L. Millet, 2005. Reconstruction of Late Glacial summer temperatures from chironomid assemblages in Lac Lautrey (Jura, France). Journal of Quaternary Science 20: 33–44.CrossRefGoogle Scholar
  32. Hofmann, W., 1986. Chironomid analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, New York: 715–723.Google Scholar
  33. Ivy-Ochs, S., H. Kerschner, P. W. Kubik & C. Schlüchter, 2006a. Glacier response in the European Alps to Heinrich Event 1 cooling: the Gschnitz stadial. Journal of Quaternary Science 21: 115–130.CrossRefGoogle Scholar
  34. Ivy-Ochs, S., H. Kerschner, A. Reuther, M. Maisch, R. Sailer, J. Schaefer, P. W. Kubik, H.-A. Synal & C. Schlüchter, 2006b. The timing of glacier advances in the northern European Alps based on surface exposure dating with cosmogenic 10Be, 26Al, 36Cl, and 21Ne. Geological Society of America Special Paper 415: 43–60.Google Scholar
  35. Jackson, S. T. & R. K. Booth, 2007. Using plant macrofossils to refine and validate pollen studies. In Elias, S. A. (ed.), Encyclopedia of Quaternary Sciences. Elsevier, New York: 2413–2442.Google Scholar
  36. Kaltenrieder, P., C. A. Belis, S. Hofstetter, B. Ammann, C. Ravazzi & W. Tinner, in press a. Environmental and climatic conditions at a potential Glacial refugial site of tree species near the southern Alpine glaciers. New insights from multiproxy sedimentary studies at Lago della Costa (Eugaean Hills, northeastern Italy), Quaternary Science Reviews.Google Scholar
  37. Kaltenrieder, P., G. Procacci, B. Vanniere & W. Tinner, in press b. Postglacial vegetation and fire history of the Euganean Hills (Colli Euganei) as recorded by sedimentary pollen and charcoal series from Lago della Costa (northeastern Italy). The Holocene.Google Scholar
  38. Katz, N., S. Katz & M. Kipiani, 1977. Atlas and keys of fruits and seeds occurring in the quaternary deposits of the USSR, Moscow (in Russian).Google Scholar
  39. Kerschner, H. & S. Ivy-Ochs, 2008. Palaeoclimate from glacier: examples from the Eastern Alps during the Alpine Lateglacial and early Holocene. Global and Planetary Change 60: 58–71.CrossRefGoogle Scholar
  40. Korhola, A. & M. Rautio, 2001. Cladocera and other branchiopod crustaceans. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments. Volume 4: Zoological indicators. Kluwer Academic Publishers, Dordrecht, The Netherlands: 5–41.Google Scholar
  41. Latałowa, M. & W. O. van der Knaap, 2006. Late Quaternary expansion of Norway spruce Picea abies (L.) Karst. in Europe according to pollen data. Quaternary Science Reviews 25: 2780–2805.CrossRefGoogle Scholar
  42. Light, J. J. & R. I. Lewis Smith, 1976. Deep-water bryophytes from the highest Scottish lochs. Journal of Bryology 9: 55–62.Google Scholar
  43. Lister, G. S., 1988. A 15 000-year isotopic record from Lake Zürich of deglaciation and climatic change in Switzerland. Quaternary Research 29(2): 129–141.CrossRefGoogle Scholar
  44. Löffler, H., 1984. The palaeolimnology of Lake Bled (Blejsko jezero). Verhandlungen der Internationalen Vereingung für theoretische und angewandte Limnologie 22: 1409–1413.Google Scholar
  45. Lojen, S., N. Ogrinc & T. Dolenec, 1997. Carbon and nitrogen stable isotope fractionation in the sediment of Lake Bled (Slovenia). Water, Air and Soil Pollution 99: 315–323.Google Scholar
  46. Lojen, S., N. Ogrinc & T. Dolenec, 1999. Decomposition of sedimentary organic matter and methane formation in the recent sediment of Lake Bled (Slovenia). Chemical Geology 159: 223–240.CrossRefGoogle Scholar
  47. Lotter, A. F., H. J. B. Birks, U. Eicher, W. Hoffmann, J. Schwander & L. Wick, 2000. Younger Dryas and Allerød summer temperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 159(3–4), Special Issue: Ammann, B. (ed.), Biotic Responses to Rapid Climatic Changes Around the Younger Dryas: 349–361.Google Scholar
  48. Lotter, A. F., O. Heiri, J. N. F. van Leeuwen, U. Eicher, J. Schwander & B. Ammann, in prep. Rapid summer temperature changes during Termination 1: multi-proxy reconstructions from Gerzensee (Switzerland), Poster at the EGU 2008.Google Scholar
  49. Lowe, J. J., W. Z. Hoek & INTIMATE Group, 2001. Inter-regional correlation of palaeoclimatic records for the Last Glacial-Interglacial Transition: a protocol for improved precision recommended by the INTIMATE project group. Quaternary Science Reviews 20: 1175–1187.CrossRefGoogle Scholar
  50. Lowe, J. J., S. O. Rasmussen, S. Björck, W. Z. Hoek, J. P. Steffenson, M. J. C. Walker, Z. C. Yu & INTIMATE group, 2008. Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group. Quaternary Science Reviews 27: 6–17.CrossRefGoogle Scholar
  51. Magny, M., J.-L. De Beaulieu, R. Drescher-Schneider, B. Vannière, A.-V. Walter-Simonnet, L. Millet, G. Bousset & O. Peyron, 2006. Climatic oscillations in central Italy during the Last Glacial-Holocene transition: the record from Lake Accesa. Journal of Quaternary Science 21: 311–320.CrossRefGoogle Scholar
  52. Magri, D., G. G. Vendramin, B. Comps, I. Dupanloup, T. Geburek, D. Gömöry, M. Latałowa, T. Litt, L. Paule, J. M. Roure, I. Tantau, W. O. van der Knaap, R. J. Petit & J.-L. de Beaulieu, 2006. A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytologist 171: 199–221.PubMedCrossRefGoogle Scholar
  53. Magyari, E., J. Chapman, B. Gaydarska, E. Marinova, T. Deli, J. Huntley, J. Allen & B. Huntley, 2008. The ‘oriental’ component of the Balkan flora: evidence of presence on the Thracian Plain during the Weichselian late glacial. Journal of Biogeography 35: 865–883.CrossRefGoogle Scholar
  54. Martinčič, A., 1996. Barja. wetlands. In Gregori, J., A. Martinčič, K. Tarman, O. Urbanc-Brečič, D. Tome & M. Zupančič (eds), Narava Slovenije, stanje in perspektive [Nature of Slovenia, Current State and Prospects for the Future]. Društvo ekologov Slovenije [Ecological Society of Slovenia] Ljubljana: 122–132.Google Scholar
  55. Merkt, J. & H. Streif, 1970. Stechrohr-Bohrgeräte für limnische und marine Lockersedimente. Geologische Jahrbuch 88: 137–148.Google Scholar
  56. Molnar, F. M., P. Rothe, U. Förstner, J. Štern, B. Ogorelec, A. Šercelj & M. Culiberg, 1978. Lakes Bled and Bohinj. Origin, composition, and pollution of recent sediments. Geologija 21: 93–164.Google Scholar
  57. Moore, P. D., J. A. Webb & M. E. Collinson, 1991. Pollen Analysis, 2nd ed. Blackwell Science, Oxford.Google Scholar
  58. Nyholm, E., 1954–1969. Illustrated moss flora of Fennoscandia II. Musci (fasc. 1–6). Botanical Society of Lund, Stockholm: 799 pp.Google Scholar
  59. Ogrin, D., 1996. Podnebni tipi v Sloveniji [The climate types in Slovenia]. Geografski vestnik 68: 39–56.Google Scholar
  60. Ogrinc, N., S. Lojen & J. Faganeli, 1997. The sources of dissolved inorganic carbon in pore waters of lacustrine sediment. Water, Air and Soil Pollution 99: 333–341.Google Scholar
  61. Ogrinc, N., S. Lojen, J. Faganeli, B. Čermelj, T. Dolenec & J. Pezdič, 1998. Carbon cycling in a lacustrine environment (Lake Bled). RMZ—Materials and Geoenvironment 45: 136–140.Google Scholar
  62. Ogrinc, N., S. Lojen & J. Faganeli, 2002. A mass balance of carbon stable isotopes in an organic-rich methane-producing lacustrine sediment (Lake Bled, Slovenia). Global and Planetary Change 33: 57–72.CrossRefGoogle Scholar
  63. Pak, M., 2001. Savska raven. In Perko, D. & O. M. Adamič (eds), Slovenija. Pokrajine in ljudje. Založba Mladinska knjiga, Ljubljana: 84–95.Google Scholar
  64. Petit, R., I. Aguinagalde, J.-L. de Beaulieu, C. Bittkau, S. Brewer, R. Cheddadi, R. Ennos, S. Fineschi, D. Grivet, M. Lascoux, A. Mohanty, G. Müller-Starck, B. Demesure-Musch, A. Palmé, J. P. Martin, S. Rendell & G. G. Vendramin, 2003. Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300: 1563–1565.PubMedCrossRefGoogle Scholar
  65. Peyron, O., C. Bégeot, S. Brewer, O. Heiri, M. Magny, L. Millet, P. Ruffaldi, E. Van Campo & G. Yu, 2005. Late-Glacial climatic changes in Eastern France (Lake Lautrey) from pollen, lake-levels, and chironomids. Quaternary Research 64: 197–211.CrossRefGoogle Scholar
  66. Radinja, D., S. Buser & D. Vrhovšek, 1987. Blejsko jezero. Lake Bled. In Adamič, F., V. Bračič, M. Čepič, R. Godec, B. Grafenauer, M. Kališnik, J. Kastelic, A. Kornhauser, G. Počkar, M. Rožman, F. Šali & I. Tavčar (eds), Enciklopedija Slovenije 1 [Encyclopedia of Slovenia 1]. Mladinska knjiga, Ljubljana: 289–291.Google Scholar
  67. Ravazzi, C., M. Donegana, E. Vescovi, E. Arpenti, M. Caccianiga, P. Kaltenrieder, L. Londeix, S. Marabini, S. Mariani, R. Pini, G. Battista Vai & L. Wick, 2006. A new Late-glacial site with Picea abies in the northern Apennine foothills: an exception to the model of glacial refugia of trees. Vegetation History and Archaeobotany 15: 357–371.CrossRefGoogle Scholar
  68. Reille, M., 1992. Pollen et Spores d’Europe et d’Afrique Du Nord. Laboratoire de Botanique Historique et Palynologie, URA, CNRS, Marseille.Google Scholar
  69. Reille, M., 1995. Pollen et Spores d’Europe et d’Afrique Du Nord (Supplement). Laboratoire de Botanique Historique et Palynologie, URA, CNRS, Marseille.Google Scholar
  70. Reimer, P. J., M. G. L. Baillie, et al., 2004. INTCAL04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46: 1029–1058.Google Scholar
  71. Scholz, C. A., 2001. Applications of seismic sequence stratigraphy in lacustrine basins. In Last, W. M. & J. P. Smol (eds), Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, Dordrecht: 7–22.Google Scholar
  72. Schultze, E., 1984. Beiträge zur Paläolimnologie des Bled-Sees in Slowenien (Jugoslawien) und zur Vegetations- und Klimaentwicklung der Umgebung. Geologija 27: 97–106.Google Scholar
  73. Schultze, E., 1988. Fallstudien zur Paläolimnologie [Case studies on paleolimnology]. Geologija 31(32): 437–516.Google Scholar
  74. Schwander, J., U. Eicher & B. Ammann, 2000. Oxygen isotopes of lake marl at Gerzensee and Leysin (Switzerland), covering the Younger Dryas and two minor oscillations, and their correlation to the GRIP ice core. Palaeogeography, Palaeoclimatology. Palaeoecology 159: 203–214.CrossRefGoogle Scholar
  75. Seppä, H. & S. Hicks, 2006. Integration of modern and past pollen accumulation rate (PAR) records across the arctic tree-line: a method for more precise vegetation reconstructions. Quaternary Science Reviews 25: 1501–1516.CrossRefGoogle Scholar
  76. Siegenthaler, U. & U. Eicher, 1986. Stable oxygen and carbon isotope analyses. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester: 407–422.Google Scholar
  77. Smith, A. J. E., 2004. The Moss Flora of Britain and Ireland, 2nd ed. Cambridge University Press, Cambridge: 1012 pp.Google Scholar
  78. Stefanova, I. & B. Ammann, 2003. Lateglacial and Holocene vegetation belts in the Pirin Mountains (southwestern Bulgaria). The Holocene 13: 97–107.CrossRefGoogle Scholar
  79. Stefanova, I., J. Atanassova, M. Delcheva & H. E. Wright, 2006. Chronological framework for the Lateglacial pollen and macrofossil sequence in the Pirin Mountains, Bulgaria: Lake Besbog and Lake Kremensko-5. The Holocene 16: 877–892.CrossRefGoogle Scholar
  80. Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13: 615–621.Google Scholar
  81. Stuiver, M. & P. Reimer, 1993. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35: 215–230.Google Scholar
  82. Telford, R. J., E. Heegaard & H. J. B. Birks, 2004. The intercept is a poor estimate of a calibrated radiocarbon age. The Holocene 14(2): 296–298.CrossRefGoogle Scholar
  83. Tobolski, K., 2000. A Guide to Peat and Lake Deposits. Vademecum Geobotanicum. Naukowe PWN, Warszawa: 508 pp (in Polish with English summary).Google Scholar
  84. Van der Knaap, W. O., J. F. N. van Leeuwen & B. Ammann, 2001. Seven years of annual pollen influx at the forest limit in the Swiss Alps studied by pollen traps: relations to vegetation and climate. Review of Palaeobotany and Palynology 117: 31–52.CrossRefGoogle Scholar
  85. Van der Knaap, W. O., J. F. N. van Leeuwen, W. Finsinger, E. Gobet, R. Pini, A. Schweizer, V. Valsecchi & B. Ammann, 2005. Migration and population expansion of Abies, Fagus, Picea and Quercus since 15000 years in and across the Alps, based on pollen-percentage threshold values. Quaternary Science Reviews 24: 645–680.CrossRefGoogle Scholar
  86. Vannière, B., G. Bossuet, A.-V. Walter-Simonnet, P. Ruffaldi, T. Adatte, M. Rossy & M. Magny, 2004. High-resolution record of environmental changes and tephrachronological markers of the Last Glacial-Holocene transition at Lake Lautrey (Jura, France). Journal of Quaternary Science 19: 797–808.CrossRefGoogle Scholar
  87. Vescovi, E., C. Ravazzi, E. Arpenti, W. Finsinger, R. Pini, V. Valsecchi, L. Wick, B. Ammann & W. Tinner, 2007. Interactions between climate and vegetation during the Late glacial period as recorded by lake and mire sediment archives in Northern Italy and Southern Switzerland. Quaternary Science Reviews 26: 1650–1669.CrossRefGoogle Scholar
  88. Von Grafenstein, U., U. Eicher, H. Erlenkeuser, P. Ruch, J. Schwander & B. Ammann, 2000. Isotope signature of the Younger Dryas and two minor oscillations at Gerzensee (Switzerland): palaeoclimatic and palaeolimnologic interpretation based on bulk and biogenic carbonates, Palaeogeography, Palaeoclimatology, Palaeoecology 159(3–4), Special Issue: Ammann, B. (ed.), Biotic Responses to Rapid Climatic Changes Around the Younger Dryas: 215–229.Google Scholar
  89. Vrhovšek, D., G. Kosi & M. Zupan, 1982. The effect on water chemistry and phytoplankton of artificial inflow of the River Radovna into Lake Bled (Yugoslavia). Hydrobiologia 96: 225–242.Google Scholar
  90. Vrhovšek, D., G. Kosi, M. Kralj & M. Bricelj, 1984. The effect of three consequent sanation measures in Lake Bled on physico-chemical and biological variables. Ekologija 19: 31–52.Google Scholar
  91. Vrhovšek, D., G. Kosi, M. Kralj, M. Bricelj & M. Zupan, 1985. The effect of lake restoration measures on the physical, chemical and phytoplankton variables of Lake Bled. Hydrobiologia 127: 219–228.CrossRefGoogle Scholar
  92. Walker, I. R., 2001. Midges: chironomidae and related Diptera. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments, Vol. 4. Zoological Indicators. Kluwer Academic Publishers, Dordrecht: 43–66.Google Scholar
  93. Wiederholm, T., 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae. Entomologica Scandinavica Supplement 19: 1–457.Google Scholar
  94. Willis, K. J. & T. H. van Andel, 2004. Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Quaternary Science Reviews 23: 2369–2387.CrossRefGoogle Scholar
  95. Willis, K. J., P. Sümegi, M. Braun & A. Tóth, 1995. The late Quaternary environmental history of Bátorliget, N. E. Hungary. Palaeogeography, Palaeoclimatology, Palaeoecology 118: 25–47.CrossRefGoogle Scholar
  96. Willis, K. J., E. Rudner & P. Sümegi, 2000. The Full-Glacial forests of central and southeastern Europe. Quaternary Research 53: 203–213.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Maja Andrič
    • 1
  • Julieta Massaferro
    • 2
  • Ueli Eicher
    • 3
  • Brigitta Ammann
    • 4
    • 5
  • Markus Christian Leuenberger
    • 3
    • 5
  • Andrej Martinčič
    • 6
  • Elena Marinova
    • 7
  • Anton Brancelj
    • 8
  1. 1.Institute of ArchaeologyScientific Research Centre of the Slovenian Academy of Sciences and ArtsLjubljanaSlovenia
  2. 2.Lab de Biodiversidad Darwin INIBIOMA/CONICETBarilocheArgentina
  3. 3.Climate and Environmental Physics, Physics InstituteUniversity of BernBernSwitzerland
  4. 4.Institute of Plant SciencesUniversity of BernBernSwitzerland
  5. 5.Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  6. 6.LjubljanaSlovenia
  7. 7.Center for Archaeological SciencesKatholike Universiteit LeuvenLeuvenBelgium
  8. 8.National Institute of BiologyLjubljanaSlovenia

Personalised recommendations