, Volume 631, Issue 1, pp 29–63 | Cite as

Palaeolimnology of the last crater lake in the Eastern Carpathian Mountains: a multiproxy study of Holocene hydrological changes

  • Enikő MagyariEmail author
  • Krisztina Buczkó
  • Gusztáv Jakab
  • Mihály Braun
  • Zoltán Pál
  • Dávid Karátson
  • István Pap


A multi-proxy investigation (loss-on-ignition, major and trace elements, pollen, plant macrofossil and siliceous algae) was carried out on the sediment of a crater lake (Lake Saint Ana, 950 m a.s.l.) from the Eastern Carpathian Mountains. Diatom-based transfer functions were applied to estimate the lake’s trophic status and pH, while reconstruction of the water-depth changes was based on the plant macrofossil and diatom records. The lowest Holocene water depths were found between 9000 and 7400 calibrated BP years, when the crater was occupied by Sphagnum-bog. Significant increases in water depth were found from 5350(1), 3300(2) and 2700 cal yr BP. Of these, the first two coincided with major terrestrial vegetation changes, namely (1) the establishment of Carpinus betulus on the crater slope and (2) the replacement of the lakeshore Picea abies forest by Fagus sylvatica. The chemical record indicated significant soil changes along with the canopy changes (from coniferous to deciduous) that led to increased in-lake productivity and pH. A further increase in water depth around 2700 cal yr BP resulted in stable thermal stratification and hypolimnetic anoxia that via P-release further increased in-lake productivity and eventually led to phytoplankton blooms with large populations of Scenedesmus. High productivity was depressed by anthropogenic lakeshore forest clearances from ca. 1000 cal yr BP that led to the re-establishment of P. abies on the lakeshore and consequent acidification of the lake water. On the whole, these data suggest that Lake Saint Ana is a vulnerable ecosystem: in-lake productivity is higher under deciduous canopy and litter, and considerably repressed by coniferous canopy and litter. The lake today subsists in a managed environment that is far from its natural state. This would be a dense F. sylvatica forest supplying more nutrients and keeping up a more productive in-lake flora and fauna.


Lake level change Romania Pollen Macrofossil Siliceous algae Sediment chemistry 



This research was funded by the Hungarian Research Fund through a postdoctoral fellowship held by EKM (OTKA F026036), the Bólyai Scholarship (BO/00518/07) and OTKA PD73234. This is MTA–MTM Paleo Contribution No. 77.


  1. Alles, E., M. Nörpel-Schempp & H. Lange-Bertalot, 1991. Zur Systematik und Ökologie charakteristischer Eunotia-Arten (Bacillariophyceae) in elektrolyt-armren Bachoberläufen. Nova Hedwigia 53: 171–214.Google Scholar
  2. Alley, R. B., P. A. Mayewski, T. Sowers, M. Stuiver, K. C. Taylor & P. U. Clark, 1997. Holocene climatic instability: a prominent widespread event 8200 yr ago. Geology 25: 438–486.CrossRefGoogle Scholar
  3. Bendell-Young, L. & H. H. Harvey, 1992. Geochemistry of Mn and Fe in lake sediments in relation to lake acidity. Limnology and Oceanography 37: 603–613.Google Scholar
  4. Bengtsson, L. & M. Enell, 1986. Chemical analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester: 423–451.Google Scholar
  5. Bennett, K. D., 1992. PSIMPOLL: A quickBasic program that generates PostScript page description of pollen diagrams. INQUA Commission for the study of the Holocene: working group on data handling methods newsletter 8: 11–12.Google Scholar
  6. Bennett, K. D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132: 155–170.CrossRefGoogle Scholar
  7. Bennett, P. C., D. I. Siegel, B. M. Hill & P. H. Glaser, 1991. Fate of silicate in a peat bog. Geology 19: 328–331.CrossRefGoogle Scholar
  8. Berger, T. W., G. Köllensperger & R. Wimme, 2004. Plant-soil feedback in spruce (Picea abies) and mixed spruce-beech (Fagus sylvatica) stands as indicated by dendrochemistry. Plant and Soil 264: 69–83.CrossRefGoogle Scholar
  9. Berglund, B. E. & M. Ralska-Jasiewiczowa, 1986. Pollen analysis and pollen diagrams. In Berglund, B. E. (ed.), Handbook of palaeoecology and palaeohydrology. Wiley, New York: 455–479.Google Scholar
  10. Beug, H. J., 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil, München.Google Scholar
  11. Birks, H. J. B., 1998. Numerical tools in palaeolimnology—progress, potentialities and problems. Journal of Paleolymnology 20: 307–332.CrossRefGoogle Scholar
  12. Birks, H. J. B., 2003. Quantitative palaeoenvironmental reconstructions from Holocene biological data. In Mackay, A., R. W. Battarbee, H. J. B. Birks & F. Oldfield (eds), Global Change in the Holocene. Hodder Arnold, London: 107–123.Google Scholar
  13. Birks, H. H. & H. J. B. Birks, 2006. Multi-proxi studies in palaeolimnology. Vegetation History and Archaeobotany 15: 235–251.CrossRefGoogle Scholar
  14. Birks, H. J. B. & A. D. Gordon, 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press, London.Google Scholar
  15. Björkman, L., A. Feurdean, K. Cinthioa, B. Wohlfarth & G. Possnert, 2002a. Lateglacial and early Holocene vegetation development in the Gutaiului Mountains, northwestern Romania. Quaternary Science Reviews 21: 1039–1059.CrossRefGoogle Scholar
  16. Björkman, L., A. Feurdean & B. Wohlfarth, 2002b. Late-Glacial and Holocene forest dynamics at Steregoiu in the Gutaiului Mountains, Northwest Romania. Review of Palaeobotany and Palynology 25: 1–33.Google Scholar
  17. Bodnariuc, A., A. Bouchette, J. J. Dedoubat, T. Otto, M. Fontugne & G. Jalut, 2002. Holocene vegetational history of the Apuseni Mountains, central Romania. Quaternary Science Reviews 21: 1465–1488.CrossRefGoogle Scholar
  18. Bond, G., W. Showers, M. Chesesby, R. Lotti, P. Almasi, P. deMenocal, P. Priore, H. Cullen, I. Hajdas & G. Bonani, 1997. A pervasive millennialscale cycle in North Atlantic Holocene and glacial climates. Science 278: 1257–1266.CrossRefGoogle Scholar
  19. Boros, Á., 1943. A Kukojszás vagy Mohos-tó és a Szentanna tó lápja (The mire of Kukojszás and Lake Saint Ana). Debreceni Szemle 12: 113–115.Google Scholar
  20. Boyle, J. F., 1994. Acidification and sediment aluminium: palaeolimnological interpretation. Journal of Paleolimnology 12: 181–187.CrossRefGoogle Scholar
  21. Brewer, S., R. Cheddadi, J. L. de Beaulieu & M. Reille, 2002. The spread of deciduous Quercus throughout Europe since the last glacial period. Forest Ecology and Management 156: 27–48.CrossRefGoogle Scholar
  22. Brown, E. T., L. Le Callonnec & C. R. German, 2000. Geochemical cycling of redox-sensitive metals in sediments from Lake Malawi: a diagnostic paleotracer for episodic changes in mixing depth. Geochimica et Cosmochimica Acta 64: 3515–3523.CrossRefGoogle Scholar
  23. Buczkó, K. & E. Magyari, 2007. The Holocene diatom flora of Lake Saint Anna (Eastern Carpathians, Europe). Archiv für Hydrobiologie, Algological Studies 124: 1–28.Google Scholar
  24. Buczkó, K. & A. Wojtal, 2007. A new Kobayasiella species (Bacillariophyceae) from Lake Saint Anna’s sub-recent deposits in Eastern Carpathian Mountains, Europe. Nova Hedwigia 84: 155–166.CrossRefGoogle Scholar
  25. Busman, L., J. Lamb, G. Randall, G. Rehm & M. Schmitt, 2002. The nature of phosphorus in soils. (last accessed 10/09/2008).
  26. Caraco, N. E., J. J. Cole & G. E. Likens, 1992. New and recycled primary production in an oligotrophic lake: insights for summer phosphorus dynamics. Limnology and Oceanography 37: 590–602.Google Scholar
  27. Cărăus, J., 2002. The algae of Romania. Studii si Cercetari, Biologie 73: 1–694.Google Scholar
  28. Chang, M., 2003. Forest Hydrology: An Introduction to Water and Forests. CRC Press, Florida.Google Scholar
  29. Cloot, A. & J. C. Roos, 1996. Modelling of a relationship between phosphorus, pH, calcium and chlorophyll-a concentration. Water SA 22: 49–61.Google Scholar
  30. Constantin, S., A. W. Bojar, S. E. Lauritzen & J. Lundberg, 2007. Holocene and Late Pleistocene climate in the sub-Mediterranean continental environment: a speleothem record from Poleva Cave (Southern Carpathians, Romania). Palaeogeography, Palaeoclimatology, Palaeoecology 243: 322–338.CrossRefGoogle Scholar
  31. Cserny, T., 1993. Lake Balaton, Hungary. In Gierlowski-Kordesch, E. & K. Kelts (eds), A Global Geological Record of Lake Basins. Cambridge University Press, London: 397–401.Google Scholar
  32. Cserny, T. & E. Nagy-Bodor, 2000. Limnogeology of Lake Balaton (Hungary). In Gierlowski-Kordesch, E. H. & K. R. Kelts (eds), Lake basins though space and time. AAPG Studies in Geology. American Association of Petroleum Geologists, USA: 605–618.Google Scholar
  33. Cymbola, J., M. Ogdahl & A. D. Steinman, 2008. Phytoplankton response to light and internal phosphorus loading from sediment release. Freshwater Biology 53: 2530–2542.CrossRefGoogle Scholar
  34. Davison, W., 1993. Iron and manganese in lakes. Earth Science Reviews 34: 119–163.CrossRefGoogle Scholar
  35. Engstrom, D. R. & H. E. Wright, 1984. Chemical stratigraphy of lake sediments as a record of environmental change. In Haworth, E. Y. & J. W. G. Lund (eds), Lake Sediments and Environmental History. Leichester University Press/University of Minnesota Press, Leichester/Minneapolis: 11–67.Google Scholar
  36. Espitalie, J., J. Deroo & F. Marquis, 1985. Rock-Eval Pyrolysis and its Applications. Institut Français du Pétrole, Report 33578.Google Scholar
  37. Fărcaş, S., J. L. de Beaulieu, M. Reille, G. Coldea, B. Diaconeasa, T. Goslar & T. Jull, 1999. First 14C datings of lateglacial and Holocene pollen sequences from the Romanian Carpathians. Comptes Rendues de l’Academie des Sciences de Paris, Sciences de la Vie 322: 799–807.CrossRefGoogle Scholar
  38. Fărcaş, S., I. Tanţău & A. Bodnariuc, 2003. The Holocene human presence in Romanian Carpathians, revealed by the palynological analysis. Würzburger Geographische Manuskripte 63: 113–130.Google Scholar
  39. Fărcaş, S., F. Popescu & I. Tanţău, 2006. Dinamica spatiala si temporala a stejarului, frasinului si carpenului in timpul Tardi- si Postglaciarului pe teritoriul Romaniei. [Temporal and spatial dynamics of oak, ash and hornbeam in the Late- and Postglacial era in Romania.] Presa Universitara Clujeana, Cluj-Napoca.Google Scholar
  40. Felton, A. A., J. M. Russell, A. S. Cohen, M. E. Baker, J. T. Chesley, K. E. Lezzar, M. M. McGlue, J. S. Pigati, J. Quade, J. C. Stager & J. J. Tiercelin, 2007. Paleolimnological evidence for the onset and termination of glacial aridity from Lake Tanganyika, Tropical East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 252: 405–423.CrossRefGoogle Scholar
  41. Feurdean, A., 2005. Holocene forest dynamics in northwestern Romania. The Holocene 15: 435–446.CrossRefGoogle Scholar
  42. Feurdean, A. & O. Bennike, 2004. Late Quaternary palaeoecological and palaeoclimatological reconstruction in the Gutaiului Mountains, northwest Romania. Journal of Quaternary Science 19: 809–827.CrossRefGoogle Scholar
  43. Feurdean, A. & O. Bennike, 2008. Plant macofossils analysis from Steregoiu, NW Romania: taphonomy, representation, and comparison with pollen analysis. Studia Universitatis Babes Bolyai, Geologia 53: 5–10.Google Scholar
  44. Feurdean, A. & K. J. Willis, 2008. The usefulness of a long-term perspective in assessing current forest conservation management in the Apuseni Natural Park, Romania. Forest Ecology and Management 256: 421–430.CrossRefGoogle Scholar
  45. Feurdean, A., V. Mosbrugger, B. Onac, V. Polyak & D. Veres, 2007a. Younger Dryas to mid-Holocene environmental history of the lowlands of NW Transylvania, Romania. Quaternary Research 68: 364–378.CrossRefGoogle Scholar
  46. Feurdean, A., B. Wohlfarth, L. Björkman, I. Tanţău, O. Bennike, K. J. Willis, S. Fărcaş & A. M. Robertsson, 2007b. The influence of refugial population on Lateglacial and early Holocene vegetational changes in Romania. Review of Palaeobotany and Palynology 145: 305–320.CrossRefGoogle Scholar
  47. Feurdean, A., S. Klotz, S. Brewer, V. Mosbrugger, T. Tamas & B. Wohlfarth, 2008a. Lateglacial climate development in NW Romania—comparative results from three quantitative pollen based methods. Palaeogeography, Palaeoclimatology, Palaeoecology 265: 121–133.CrossRefGoogle Scholar
  48. Feurdean, A., S. Klotz, V. Mosbrugger & B. Wohlfarth, 2008b. Pollen-based quantitative reconstructions of Holocene climate variability in NW Romania. Palaeogeography, Palaeoclimatology, Palaeoecology 260: 494–504.CrossRefGoogle Scholar
  49. Gell, P., P. Barker, P. DeDeckker, W. Last & L. Jelicic, 1994. The Holocene history of West Basin Lake, Victoria, Australia; chemical changes based on fossil biota and sediment mineralogy. Journal of Palaeolimnology 12: 235–258.CrossRefGoogle Scholar
  50. Gibson, C. E., 1997. The dynamics of phosphorous in freshwater and marine environments. In Tunney, H., O. T. Carton, P. C. Brookes & A. E. Johnston (eds), Phosphorous Loss from Soil to Water. CAB International, Wallingford: 119–149.Google Scholar
  51. Grivet, D. & R. J. Petit, 2003. Chloroplast DNA phylogeography of the hornbeam in Europe: evidence for a bottleneck at the outset of postglacial colonization. Conservation Genetics 4: 47–56.CrossRefGoogle Scholar
  52. Haas, J. N., I. Richoz, W. Tinner & L. Wick, 1998. Synchronous Holocene climatic oscillations recorded on the Swiss Plateau and at timberline in the Alps. The Holocene 8: 301–309.CrossRefGoogle Scholar
  53. Hamilton-Taylor, J., W. Davison & K. Morfett, 1996. The biogeochemical cycling of Zn, Cu, Fe, Mn, and dissolved organic C in a seasonally anoxic lake. Limnology and Oceanography 41: 408–418.Google Scholar
  54. Harrison, S. P., G. Yu & P. E. Tarasov, 1996. Late quaternary lake-level record from Northern Eurasia. Quaternary Research 45: 138–159.CrossRefGoogle Scholar
  55. Hedenäs, L., 1993. Field and microscope keys to the Fennoscandian species of the Calliergon–Scorpidium–Drepanocladus complex, including some related or similar species. Biodetector AB, Märsta.Google Scholar
  56. Heiri, O., A. F. Lotter & G. Lemcke, 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.CrossRefGoogle Scholar
  57. Heiri, O., W. Tinner & A. F. Lotter, 2004. Evidence for cooler European summer during periods of changing meltwater flux to the North Atlantic. Proceedings of the National Academy of Sciences of the United States of America 101: 15285–15288.PubMedCrossRefGoogle Scholar
  58. Hortobágyi, T., 1942. Moszatok a Szent Anna-tóból (Algae from Lake Saint Ana). Acta Botanica 1: 102–112.Google Scholar
  59. Hortobágyi, T., 1943. Beiträge zur Kenntnis des August-Phytoplanktons im St.Anna-See (in Hungarian with German summary). Botanikai Közlemények 40: 377–382.Google Scholar
  60. Jakab, G., 2007. The macrobotanical remains from Mezőlak. In Zatykó, P., I. Juhász & P. Sümegi (eds), Environmental History of Transdanubia. Varia Archaeologica Hungarica 20, Budapest: 325–328.Google Scholar
  61. Jakab, G. & P. Sümegi, 2005. A nagybárkányi Nádas-tó kialakulása a makrofosszília vizsgálatok alapján (Cserhát, Észak-Magyarország) (The development of Nádas Lake at Nagybárkány, Mt Cserhát, N Hungary). Kitaibelia 10: 104–114.Google Scholar
  62. Jakab, G. & P. Sümegi, 2007. The macrobotanical remains from Baláta-tó. In Zatykó, P., I. Juhász & P. Sümegi (eds), Environmental History of Transdanubia. Varia Archaeologica Hungarica 20, Budapest: 247–250.Google Scholar
  63. Jakab, G., P. Sümegi & E. Magyari, 2004a. A new quantitative method for the palaeobotanical description of Late Quaternary organic sediments. Antaeus 27: 181–211.Google Scholar
  64. Jakab, G., P. Sümegi & E. Magyari, 2004b. A new paleobotanical method for the description of Late Quaterary organic sediments (Mire-development pathways and paleoclimatic record from S Hungary). Acta Geologica Hungarica 47: 373–409.CrossRefGoogle Scholar
  65. Jakab, G., P. Sümegi & Zs Szántó, 2005. Késő-glaciális és holocén vízszintingadozások a Szigligeti-öbölben (Balaton) makrofosszília vizsgálatok eredményei alapján (Late Glacial and Holocene water level changes in the Szigliget Bay, Lake Balaton based on macrofossil investigations). Földtani Közlöny 135: 405–431.Google Scholar
  66. Jakab, G., P. Majkut, I. Juhász, S. Gulyás, P. Sümegi & T. Törőcsik, 2009. Palaeoclimatic signals and anthropogenic disturbances from the peatbog at Nagybárkány (North Hungary). Hydrobiologia. doi: 10.1007/s10750-009-9803-z.
  67. Jankovská, V., 2001. Vegetation development in the W part of the Giant Mts. during the Holocene (Pančava Rašeliništĕ Mire–palaeoecological research). Opera Corcontica 8: 8–17.Google Scholar
  68. Jasinski, J. P. P., B. G. Warner, A. A. Andreev, R. Aravena, S. E. Gilbert, B. A. Zeeb, J. P. Smol & A. A. Velichko, 1998. Holocene environmental history of a peatland in the Lena River valley, Siberia. Canadian Journal of Earth Sciences 35: 637–648.CrossRefGoogle Scholar
  69. Juggins, S., 1991. ZONE v. 2.1. Unpublished computer program. Department of Geography, University of Newcastle, UK.Google Scholar
  70. Juggins, S., 2001. The European Diatom Database, User Guide, Version 1.0.
  71. Juvigné, E., M. Gewelt, E. Gilot, C. Hurtgen, I. Seghedi, A. Szakacs, Gy. Gábris, Á. Hadnagy & E. Horváth, 1994. Une éruption vieille d’environ 10700 ans (14C) dans les Carpates orientales (Roumanie). Isotopic Geochemistry. Comptes rendus de l’Académie des sciences Paris 318: 1233–1238.Google Scholar
  72. Koinig, K. A., W. Shotyk, A. F. Lotter, C. Ohlendorf & M. Sturm, 2003. 9000 years of geochemical evolution of lithogenic major and trace elements in alpine lake sediments—the role of climate, vegetation and land-use history. Journal of Paleolimnology 30: 307–320.CrossRefGoogle Scholar
  73. Komárek, J. & V. Jankovská, 2001. Review of the green algal genus Pediastrum; implication for pollenanalytical research. Bibliotheca Phycologica 108: 1–127.Google Scholar
  74. Kooijman, A. M., 1993. On the ecological amplitude of four mire bryophytes, a reciprocal transplant experiment. Lindbergia 18: 19–24.Google Scholar
  75. Kopáček, J., J. Borovec, J. Hejzlar, K. U. Ulrich, S. A. Norton & A. Amirbahman, 2005. Aluminum control of phosphorus sorption by lake sediments. Environmental Science & Technology 39: 8784–8789.CrossRefGoogle Scholar
  76. Krammer, K., 2000. The genus Pinnularia. In Lange-Bertalot, H. (ed.), Diatoms of Europe 1. A.R.G. Gantner Verlag K.G., Ruggell.Google Scholar
  77. Krammer, K. & H. Lange-Bertalot, 1986–1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae 1–4. Gustav Fischer Verlag, Stuttgart, Jena.Google Scholar
  78. Kristó, A., 1995. A Csomád hegycsoport. A Szent-Anna tó természetvédelmi területe (The Nature Reserve of Lake Saint Ana). In Papp, Á. & I. Szíjártó (eds), Kristó András emlékére (In remembrance of András Kristó). Balaton Akadémia Könyvek 13, Vörösberény, Budapest: 38–45.Google Scholar
  79. Lange-Bertalot, H. 2001. Navicula sensu stricto 10 Genera separated from Navicula sensu lato Frustulia. In Lange-Bertalot, H. (ed.), Diatoms of Europe 2. A.R.G. Gantner Verlag K.G., Rugell: 526 pp.Google Scholar
  80. Lange-Bertalot, H. & D. Metzeltin, 1996. Indicators of Oligotrophy. Iconographia Diatomologica 2, Koeltz Scentific Books.Google Scholar
  81. Lawson, D. S., D. C. Hurd & H. S. Pankratz, 1978. Silica dissolution rates of decomposing phytoplankton assemblages at various temperatures. American Journal of Science 278: 1373–1393.Google Scholar
  82. Lepşi, I., 1957. Protozoen aus dem anmoorigen Gebirgssee St.Anna in Rumänien. Travaux du Museum d’Histoire Naturelle Grigore Antipa 1: 73–110.Google Scholar
  83. Lerman, A., 1978. Lakes: Chemistry, Geology, Physics. Springer, New York.Google Scholar
  84. Mackereth, F. J. H., 1965. Chemical investigations of lake sediments and their interpretation. Proceedings of the Royal Society B161: 285–309.Google Scholar
  85. Mackereth, F. J. H., 1966. Some chemical observations on post-glacial lake sediments. Philosophical Transactions of the Royal Society of London B 250: 165–213.CrossRefGoogle Scholar
  86. Magny, M., 1998. Reconstruction of Holocene lake-level changes in the Jura (France): methods and results. In Harrison, S. P., B. Frenzel, U. Huckried & M. Weiss (eds), Palaeohydrology as Reflected in Lake-Level Changes as Climatic Evidence for Holocene times. Paläoklimaforschung 25, Gustav Fisher, Stuttgart: 67–85.Google Scholar
  87. Magny, M., 1999. Lake-level fluctuations in the Jura and French subalpine ranges associated with ice-rafting events in the North Atlantic and variations in the polar atmospheric circulation. Quaternaire 10: 61–64.Google Scholar
  88. Magny, M., C. Miramot & O. Sivan, 2002. Assessment of the impact of climate and anthropogenic factors on Holocene Mediterranean vegetation in Europe on the basis of palaeohydrological records. Palaeogeography, Palaeoclimatology, Palaeoecology 186: 47–59.CrossRefGoogle Scholar
  89. Magny, M., C. Begeot, J. Guiot & O. Peyron, 2003. Constraining patterns of hydrological changes in Europe in response to Holocene climate cooling phases. Quaternary Science Reviews 22: 1589–1596.CrossRefGoogle Scholar
  90. Magyari, E., P. Sümegi, M. Braun, G. Jakab & M. Molnár, 2001. Retarded wetland succession: anthropogenic and climatic signals in a Holocene peat bog profile from north-east Hungary. Journal of Ecology 89: 1019–1032.CrossRefGoogle Scholar
  91. Magyari, E. K., K. Buczkó, G. Jakab, M. Braun, Zs. Szántó, M. Molnár, Z. Pál & D. Karátson, 2006. Holocene palaeohydrology and environmental history in the South Harghita Mountains, Romania. Földtani Közlöny 136: 249–284.Google Scholar
  92. Makkai, L. & A. Mócsy, 1986. Erdély Története, Első kötet, A kezdetektől 1606-ig (The history of Transylvania, 1st volume, From the beginning to 1606). Akadémiai Kiadó, Budapest.Google Scholar
  93. Markgraf, V., 1980. Pollen dispersal in a mountain area. Grana 19: 127–146.CrossRefGoogle Scholar
  94. Mayewski, P. A., E. E. Rohling, J. C. Stager, W. Karlen, K. A. Maasch, D. L. Meeker, E. A. Meyerson, F. Gasse, S. van Kreveldg, K. Holmgren, J. Lee-Thorph, G. Rosqvistd, F. Rack, M. Staubwasser, R. R. Schneider & E. R. Steig, 2004. Holocene climate variability. Quaternary Science Reviews 62: 243–255.Google Scholar
  95. Moore, P. D., J. A. Webb & M. E. Collinson, 1992. Pollen Analysis, 2nd ed. Blackwell Scientific Publications, Oxford.Google Scholar
  96. Moriya, I., M. Okuno, T. Nakamura, K. Ono, A. Szakács & I. Seghedi, 1996. Radiocarbon ages of charcoal fragments from the pumice flow deposit of the last eruption of Ciomadul volcano, Romania. Summaries of Researches using AMS at Nagoya University 7: 255.Google Scholar
  97. Newbold, J. D., 1992. Cycles and spirals of nutrients. In Calow, P. & G. E. Petts (eds), The Rivers Handbook. Blackwell Scientific, Oxford: 379–408.Google Scholar
  98. Norusis, M. J., 1990. SPSS/PC+ Advanced Statistics 4.0 for IBM PC/XT/AT and PS/2. SPSS Inc, Chicago.Google Scholar
  99. Nyárádi, E. Gy., 1929. A vizek és vízben bővelkedő talajok növényzetéről a Hargitában (Vegetation of lakes and wetlands in Mt Hargita). In Csutak, V. (ed.), Emlékkkönyv a Székely Nemzeti Múzeum 50 éves jubileumára (Memorandum on the 50th Anniversary of the Székely National Museum). Minerova Irodalmi és Nyomdai Műintézet Részvénytársaság, Sepsiszentgyörgy: 557–615.Google Scholar
  100. Onac, B. P., S. Constantin, J. Lundberg & S. E. Lauritzen, 2002. Isotopic climate record in a Holocene stalagmite from Ursilor Cave (Romania). Journal of Quaternary Science 17: 319–327.CrossRefGoogle Scholar
  101. Pál, Z., 2000. A Szent Anna Tó: következtetések a tó mélységét és feltöltődésést illetően (Lake Saint Ana: inferences regarding water-depth and lake infillment). Collegicum Geographicum 1: 65–74.Google Scholar
  102. Pál, Z., 2001. A Szent Anna Tó batimetriája (Bathymetry of Lake Saint Ana). Collegicum Geographicum 2: 73–78.Google Scholar
  103. Pécskay, Z., J. Lexa, A. Szakács, K. Balogh, I. Seghedi, V. Konecny, M. Kovács, E. Márton, M. Kaliciak, V. Széky-Fux, T. Póka, P. Gyarmati, O. Edelstein, E. Rosu & B. Žec, 1995. Space and time distribution of Neogene-Quaternary volcanism in the Carpatho-Pannonian Region. Acta Vulcanologica 7: 15–28.Google Scholar
  104. Petersen, J. B., 1950. Observations on some small species of Eunotia. Dansk Botanisk Arkiv 14: 1–19.Google Scholar
  105. Petit, R. J., S. Brewer, S. Bordács, K. Burg, R. Cheddadi, E. Coart, J. Cottrell, U. M. Csaikl, B. C. van Dam, J. D. Deans, S. Fineschi, R. Finkeldey, I. Glaz, P. G. Goicoechea, J. S. Jensen, A. O. König, A. J. Lowe, S. F. Madsen, G. Mátyás, R. C. Munro, F. Popescu, D. Slade, H. Tabbener, S. M. G. de Vries, B. Ziegenhagen, J. L. de Beaulieu & A. Kremer, 2001. Identification of refugia and postglacial colonization routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management 156: 49–74.CrossRefGoogle Scholar
  106. Podani, J., 1993. SYN-TAX 5.0: Computer programs for multivariate data analysis in ecology and systematics. Abstracta Botanica 17: 289–302.Google Scholar
  107. Pop, E., 1960. Mlastinile de turba din Republica Populara Romana (Peat bogs in Romania). Academia Republica Populara Romana, Bucuresti.Google Scholar
  108. Ragotzkie, R. A., 1978. Heat Budgets of Lakes. In Lerman, A. (ed.), Lakes: Chemistry, Geology, Physics. Springer, New York: 1–19.Google Scholar
  109. Ranger, J. & C. Nys, 1994. The effect of spruce (Picea abies Karst.) on soil development: an analytical and experimental approach. European Journal of Soil Science 45: 193–204.CrossRefGoogle Scholar
  110. Reimer, P. J., M. G. L. Baillie, E. Bard, A. Bayliss, J. W. Beck, C. J. H. Bertrand, P. G. Blackwell, C. E. Buck, G. S. Burr, K. B. Cutler, P. E. Damon, R. L. Edwards, R. G. Fairbanks, M. Friedrich, T. P. Guilderson, A. G. Hogg, K. A. Hughen, B. Kromer, G. McCormac, S. Manning, C. B. Ramsey, R. W. Reimer, S. Remmele, J. R. Southon, M. Stuiver, S. Talamo, F. W. Taylor, J. van der Plicht & C. E. Weyhenmeyer, 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46: 1029–1058.Google Scholar
  111. Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge.Google Scholar
  112. Rösch, M. & E. Fischer, 2000. A radiocarbon dated Holocene profile from the Banat mountains (Southwestern Carpathians, Romania). Flora 195: 277–286.Google Scholar
  113. Rühland, K., J. P. Smol, J. P. Jasinski & B. G. Warner, 2000. Response of Diatoms and Other Siliceous Indicators to the Developmental History of a Peatland in the Tiksi Forest, Siberia, Russia. Arctic, Antarctic, and Alpine Research 32: 167–178.CrossRefGoogle Scholar
  114. Rybníček, K., 1985. A Central-European approach to the classification of mire vegetation. Aquilo Seria Botanica 21: 19–31.Google Scholar
  115. Sandgren, C. D., 1988. The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In Sandgren, C. D. (ed.), Growth and Reproduction Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 9–103.Google Scholar
  116. Schettler, G., M. J. Schwab & M. Stebich, 2007. A 700-year record of climate change based on geochemical and palynological data from varved sediments (Lac Pavin, France). Chemical Geology 240: 11–35.CrossRefGoogle Scholar
  117. Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.PubMedCrossRefGoogle Scholar
  118. Schnitchen, Cs., D. J. Charman, E. Magyari, M. Braun, I. Grigorszky, B. Tóthmérész, M. Molnár & Zs. Szántó, 2006. Reconstructing hydrological variability from testate amoebae analysis in Carpathian peatlands. Journal of Paleolimnology 36: 1–17.CrossRefGoogle Scholar
  119. Schur, F., 1858. Der südliche Hochgebirgs-Zug Siebenbürgens in botanish-geographisher Beziehung. Österreichische Botanische Zeitschrift 8: 393–407.CrossRefGoogle Scholar
  120. Seppä, H., H. J. B. Birks, T. Giesecke, D. Hammarlund, T. Alenius, K. Antonsson, A. E. Bjune, M. Heikkilä, G. M. MacDonald, A. E. K. Ojala, R. J. Telford & S. Veski, 2007. Spatial structure of the 8200 cal yr BP event in northern Europe. Climate of the Past 3: 225–236.Google Scholar
  121. Shearer, C. A., E. Descals, B. Kohlmeyer, J. Kohlmeyer, L. Marvanova, D. Padgett, D. Porter, H. A. Raja, J. P. Schmit, H. A. Thorton & H. Voglymayr, 2007. Fungal Biodiversity in aquatic habitats. Biodiversity and Conservation 16: 47–67.CrossRefGoogle Scholar
  122. Smol, J. P., 1985. The ratio of diatom frustules to chrysophycean statospores: a useful paleolimnological index. Hydrobiologia 123: 199–208.CrossRefGoogle Scholar
  123. Smol, J. P., J. B. Birks & W. M. Last, 2001. Tracking Environmental Change Using lake Sediments. Vol. 3. Terrestrial, Algal and Siliceous Indicators. Kluwer Academic Publishers, London.Google Scholar
  124. Solomon, A. M. & A. B. Silkworth, 1986. Spatial patterns of atmospheric pollen transport in a mountain region. Quaternary Research 25: 150–162.CrossRefGoogle Scholar
  125. Somogyi, A., M. Braun, A. Tóth & K. J. Willis, 1999. Speciation of elements in lake sediments investigated using X-ray fluorescence and inductively coupled plasma atomic emission spectrometry. X-Ray Spectrometry 27: 283–287.CrossRefGoogle Scholar
  126. Starkel, L., T. Kalicki, T., M. Krąpiec, R. Soja, P. Gębica & E. Czyżowska, 1996. Hydrological changes of valley floor in the Upper Vistula Basin during the Late Vistulian and Holocene. Geographical Studies, Special Issue 9: 7–128.Google Scholar
  127. Steinman, A. D., R. Rediske & K. R. Reddy, 2004. The importance of internal phosphorus loading to Spring Lake, Michigan. Journal of Environmental Quality 33: 2040–2048.PubMedCrossRefGoogle Scholar
  128. Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13: 614–621.Google Scholar
  129. Szakács, S. & I. Seghedi, 1995. The Calimani-Gurghiu-Harghita volcanic chain: volcanological features. Acta Vulcanologica 7: 145–153.Google Scholar
  130. Tallis, J. H., 1983. Changes in wetland communities. In Gore, A. J. P. (ed.), Ecosystems of the Word. Mires: swamp, bog, fen and moor, Vol. 4B. Elsevier, Amsterdam: 311–347.Google Scholar
  131. Tanţău, I., M. Reille, J. L. de Beaulieu, S. Fărcaş, T. Goslar & M. Paterne, 2003. Vegetation history in the eastern Romanian Carpathians: pollen analysis of two sequences from the Mohos crater. Vegetation History and Archaeobotany 12: 113–125.CrossRefGoogle Scholar
  132. Tanţău, I., M. Reille, J. L. de Beaulieu & S. Fărcaş, 2006. Late Glacial and Holocene vegetation history in the southern part of Transylvania (Romania): pollen analysis of two sequences from Avrig. Journal of Quaternary Science 21: 49–61.CrossRefGoogle Scholar
  133. Tessier, A., P. G. C. Cambell & M. Bisson, 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51: 844–851.CrossRefGoogle Scholar
  134. Tinner, W. & A. F. Lotter, 2001. Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29: 551–554.CrossRefGoogle Scholar
  135. Ulrich, K. U. & R. Pöthig, 2000. Precipitation of aluminium and phosphate affected by acidification. Acta Hydrochimica et Hydrobiologica 28: 313–322.CrossRefGoogle Scholar
  136. Van Geel, B., D. P. Hallewas & J. P. Pals, 1982/1983. A late Holocene deposit under the Westfriese Zeedijk near Enkhuzien (Prov. of Noord-Holland, The Netherlands): palaeoecological and archaeological aspects. Review of Palaeobotany and Palynology 38: 269–335.Google Scholar
  137. Vinkler, A. P., Sz. Harangi, T. Ntaflos & A. Szakács, 2007. A Csomád vulkán (Keleti-Kárpátok) horzsaköveinek kőzettani és geokémiai vizsgálata—petrogenetikai következtetések (Petrology and geochemistry of the pumices from the Ciomadul volcano (Eastern Carpathians)—implications for the petrogenetic processes). Földtani Közlöny 137: 103–128.Google Scholar
  138. von Grafenstein, U., H. Erlenkeuser, J. Müller, J. Jouzel & S. Johnsen, 1998. The short cold period 8,200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Climate Dynamics 14: 73–81.CrossRefGoogle Scholar
  139. Vorren, T., K. D. Vorren, T. Alm, S. Gulliksen & R. Løvlie, 1988. The last deglaciation (20,000 to 11,000 B.P.) on Andøya, northern Norway. Boreas 17: 41–77.CrossRefGoogle Scholar
  140. Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems. Elsevier Sciences, London.Google Scholar
  141. Wilkinson, A. N., B. A. Zeeb, J. J. P. Smol & M. S. V. Douglas, 1997. Chrysophyte stomatocyst assemblages associated with periphytic, high arctic pond environments. Nordic Journal of Botany 17: 95–112.CrossRefGoogle Scholar
  142. Wilson, T. A., S. A. Norton, B. A. Lake & A. Amirbahman, 2008. Sediment geochemistry of Al, Fe, and P for two historically acidic, oligotrophic Maine lakes. Science of the Total Environment 404: 269–275.PubMedCrossRefGoogle Scholar
  143. Wohlfarth, B., G. Hannon, A. Feurdean, L. Ghergaric, B. P. Onac & G. Possnert, 2001. Reconstruction of climatic and environmental changes in NW Romania during the early part of the last deglaciation (15, 000–13, 600 cal years BP). Quaternary Science Reviews 20: 1897–1914.CrossRefGoogle Scholar
  144. Wright, H. E., 1967. A square rod piston sampler for lake sediments. Journal of Sedimentary Petrology 37: 975–976.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Enikő Magyari
    • 1
    Email author
  • Krisztina Buczkó
    • 2
  • Gusztáv Jakab
    • 3
  • Mihály Braun
    • 4
  • Zoltán Pál
    • 5
  • Dávid Karátson
    • 6
  • István Pap
    • 7
  1. 1.Hungarian Natural History Museum Palaeonthological Research GroupHungarian Academy of SciencesBudapestHungary
  2. 2.Department of BotanyHungarian Natural History MuseumBudapestHungary
  3. 3.Institute of Environmental SciencesSzent István UniversitySzarvasHungary
  4. 4.Department of Inorganic and Analytical ChemistryUniversity of DebrecenDebrecenHungary
  5. 5.Department of Physical Geography, Faculty of GeographyBabes Bolyai University of ClujCluj-NapocaRomania
  6. 6.Department of Physical GeographyEötvös Loránd University of BudapestBudapestHungary
  7. 7.Department of Mineralogy and GeologyUniversity of DebrecenDebrecenHungary

Personalised recommendations