, Volume 631, Issue 1, pp 3–28 | Cite as

Review of dated Late Quaternary palaeolimnological records in the Carpathian Region, east-central Europe

  • Krisztina BuczkóEmail author
  • Enikő Katalin Magyari
  • Peter Bitušík
  • Agnieszka Wacnik


The Carpathian Region (including mountains and plains) has for a long time been lacking good palaeoenvironmental and especially palaeolimnological records, particularly for the Late Quaternary. In the last two decades, many new sedimentary sequences were obtained and studied using a wide range of palaeoproxies. This article reviews results from 123 sequences in the Carpathian Region, all dated by radiometric methods. Our aim was to pay attention to the existence of these data; many of them published in national periodicals and journals. Palaeoenvironmental records with at least two proxies and with palaeolimnological interpretation were compiled in both tabular form and on maps. Inspite of the density of examined sites, an assessment of the dataset led us to the following conclusions: (1) very few provide firm hydrological–limnological interpretation, such as lake level and mire water-depth fluctuation, lake productivity changes and pH changes; (2) only 47 of them are real multi-proxy studies (have at least two proxies employed on the same sediment core); (3) glacial lakes in Slovakia and Romania as well as in Ukraine are seriously under-investigated although they would be ideal objects of palaeolimnological works with the many proxies applicable on them; (4) the Hungarian lowland areas are dominated by shallow tectonic lakes or palaeochannels, often with unsatisfactory preservation of certain biological proxies (e.g. diatoms, chironomids, cladocerans). Consequently, palaeolimnological studies from this region have to apply a different combination of proxies and approach than mountain lake studies.


Palaeolimnological records Multi-proxy Carpathians Pannonian Plain Late Glacial Holocene 



We are grateful to Gábor Umann for plotting Fig. 1 and harmonizing the geographical coordinates of the presented palaeorecords, and Miklós Bálint for checking the Romanian localities. We thank the support of the Bolyai János Research Scholarship and the Hungarian Scientific Fund (OTKA F026036) under Hungarian Natural History Museum Palaeo Contribution No. 78, Hungarian Academy of Sciences. We also thank Vasil Pokynčereda for providing data on lakes of glacial origin in the Ukrainian part of the Carpathians.


  1. Alexandrowicz, S. W., 1984a. Zespoły malakofauny w czwartorzędowych osadach polskich Karpat [Malacofaunal assemblages in the Quaternary deposits of the Polish Carpathians.] (in Polish). Biuletyn Instytutu Geologicznego 346: 187–205.Google Scholar
  2. Alexandrowicz, S. W., 1984b. Mid-Holocene malacofauna from the Harcygrund near Czorsztyn (Pieniny Klippen Belt, Carpathians) [in Polish]. Studia Geologica Polonica 83: 95–114.Google Scholar
  3. Alexandrowicz, S. W., 1985. Subfossil malacofauna from the landslide in Piwniczna (Polish Flysch Carpathians). Folia Quaternaria 56: 79–100.Google Scholar
  4. Alexandrowicz, S. W., 1988. Malacofauna of Late Quaternary loess-like deposits in the Polish Carpathians. Acta Geologica Polonica 38: 85–123.Google Scholar
  5. Alexandrowicz, S. W., K. Mamakowa & A. Wójcik, 1985. Jasło-Bryły; Stratygraphy of alluvial and deluvial deposits of the North Polish Glaciation. Carpatho-Balkan Geological Association XIII Congress, Cracow, Guide to excursion 5: 111–113.Google Scholar
  6. Alley, R. B., P. A. Mayewski, T. Sowers, M. Stuiver, K. C. Taylor & P. U. Clark, 1997. Holocene climatic instability: a prominent widespread event 8200 yr ago. Geology 25: 438–486.CrossRefGoogle Scholar
  7. Appleby, P. G. & G. T. Piliposian, 2006. Radiometric dating of sediment records from mountain lakes in the Tatra Mountains. Biologia, Bratislava 61: 51–64.CrossRefGoogle Scholar
  8. Battarbee, R. W., D. Morley, H. Bennion & G. L. Simpson, 2007. A meta-database for recent paleolimnological studies. PAGES News 15: 23–24.Google Scholar
  9. Battarbee, R. W., D. Morley, H. Bennion, G. L. Simpson, M. Hughes & V. Bauere, 2009. A palaeolimnological meta-database for assessing the ecological status of lakes. Journal of Paleolimnology (in print).Google Scholar
  10. Berglund, B. E., H. J. B. Birks, M. Ralska-Jasiewiczowa & H. E.Wright (eds), 1986. Palaeoecological Events During the Last 15 000 Years – Regional Syntheses of Palaeoecological Studies of Lakes and Mires in Europe. JohnWiley and Sons Ltd., Chichester: 764 pp.Google Scholar
  11. Bitušík, P., V. Kubovčík, E. Štefková, P. G. Appleby & M. Svitok, 2009. Subfossil diatom and chironomid distributions along an altitudinal gradient in the High Tatra Mountain lakes: palaeolimnological reconstruction of environmental changes. Hydrobiologia. doi: 10.1007/s10750-009-9802-0.
  12. Björkman, L., A. Feurdean, K. Cinthio, B. Wohlfarth & G. Possnert, 2002. Lateglacial and early Holocene vegetation development in the Gutaiului Mountains, NW Romania. Quaternary Science Reviews 21: 1039–1059.CrossRefGoogle Scholar
  13. Björkman, L., A. Feurdean & B. Wohlfarth, 2003. Lateglacial and Holocene forest dynamics at Steregoiu in the Gutaiului Mountains, NW Romania. Review of Palaeobotany and Palynology 124: 79–111.CrossRefGoogle Scholar
  14. Bodnariuc, A., A. Bouchette, J. J. Dedoubat, T. Otto, M. Fountugne & G. Jalut, 2002. Holocene vegetational history of the Apuseni Mountains, central Romania. Quaternary Science Reviews 21: 1465–1488.CrossRefGoogle Scholar
  15. Bond, G., B. Kromer, J. Beer, R. Muscheler, M. N. Evans, W. Showers, S. Hoffmann, R. Lotti-Bond, I. Hajdas & G. Bonani, 2001. Persistent solar influence on north Atlantic climate during the Holocene. Science 294: 2130–2136.PubMedCrossRefGoogle Scholar
  16. Borsy, Z., É. Csongor & E. Félegyházi, 1989. A Bodrogköz kialakulása és vízhálózatának változásai. [The formation and development of water regime at Bodrogköz region.] (in Hungarian). Alföldi Tanulmányok 13: 65–81.Google Scholar
  17. Brauer, A. & J. F. W. Negendank, 2004. Editorial, The European Lake Drilling Programme (ELDP) from 1996–2001: high-resolution lake sediment records in climate and environment variability studies. Quaternary International 122: 1–5.CrossRefGoogle Scholar
  18. Braun, M., Gy. Lakatos, I. Mészáros, P. Sümegi, L. Szűcs & Gy. Szöőr, 1992. A kállósemjéni Nagy-Mohos láp fejlődéstörténete üledékföldtani, geokémiai, malakológiai és pollenanalitikai vizsgálatok alapján. [Geochemistry- mollusk- and pollen-based reconstruction of Nagy-Mohos bog at Kállósemjén.] (in Hungarian). In Szöőr, Gy. (ed.), Fáciesanalitikai, paleobiogeokémiai és paleoökológiai kutatások. [Studies on Facies Analyses, Paleobiochemistry and Paleoecology.]. MTA Debreceni Akadémiai Bizottság kiadványa, Debrecen: 205–245.Google Scholar
  19. Braun, M., P. Sümegi, A. Tóth, K. J. Willis, I. Szalóki, Z. Margitai & A. Somogyi, 2005. Reconstruction of long-term environmental changes at Kelemér-Kis-Mohos-tó. In Gál, E., I. Juhász & P. Sümegi (eds), Environmental Archaeology in North-Eastern Hungary, Vol. 19. Varia Archaeologica Hungarica, Budapest: 25–38.Google Scholar
  20. Buczkó, K., L. Vörös & T. Cserny, 2005. The diatom flora and vegetation of Lake Balaton from sediment cores according to Márta Hajós’s legacy. Acta Botanica Hungarica 47: 75–115.CrossRefGoogle Scholar
  21. Buczkó, K., E. K. Magyari, J. Kédl, M. Braun & M. Bálint, 2008. Multi-fold use of siliceous microfossils in palaeoecological reconstruction: a case study from the Southern-Carpathians. In Jasprica, N., A. Car & M. Calic (eds) The 20th International Diatom Symposium Abstract book, 7–13 September, Dubrovnik, Croatia: 113.Google Scholar
  22. Buczkó, K., E. K. Magyari, M. Braun & M. Bálint, 2009. Late Glacial and Holocene diatoms from glacial lake Taul dintre Brazi, Retezat Mts, Romania – Diatomededelingen 33. The joint 40th Meeting of the Dutch-Flemish Society of Diatomists (NVKD) and 3rd Central European Diatom Meeting (CeDiatoM) 26–29 March 2009, Utrecht, The Netherlands. Nederlands-Vlaamse Kring van Diatomisten: 36–39.Google Scholar
  23. Budziszewski, J. & M. Skowronek, 2001. Results of the preliminary archaeological researches in the Mount Cergowa Massif, the Lower Beskid Mountains. In Machnik, J. (ed.), Archaeology and Natural Background of the Lower Beskid Mountains, Carpathians, Part I, Prace Komisji Prehistorii Karpat, Vol. II. Polska Akademia Umiejętności, Kraków: 145–164.Google Scholar
  24. Clarke, G., M. Kernan, A. Marchetto, S. Sorvari & J. Catalan, 2005. Using diatoms to assess geographical patterns of biological and limnological change in high-altitude European lakes from pre-industrial times to the present day. Aquatic Sciences 67: 224–236.Google Scholar
  25. Cserny, T., 2000. Komplex földtani kutatások hazai tavakon, lápokon és mocsarakon. [Complex geological survey on Hungarian lakes, mires and swamps.] (in Hungarian). In Szurdoki, E. (ed.), Tőzegmohás élőhelyek hazánkban: kutatás, kezelés, védelem. CEEWEB Munkacsoport, Miskolc: 27–41.Google Scholar
  26. Cserny, T., 2002. A balatoni negyedidőszaki üledékek kutatási eredményei. [Results of an investigation into Quaternary lacustrine sediments in Lake Balaton.] (in Hungarian). Földtani Közlöny 132: 193–213.Google Scholar
  27. Cserny, T. & E. Nagy-Bodor, 2000. Limnogeological investigations on Lake Balaton. In Gierlowski-Kordesch, E. & K. Kelts (eds), Lake Basins Through Space and Time. AAPG Studies in Geology 46: 605–618.Google Scholar
  28. Cserny, T. & E. Nagy-Bodor, 2005. Late Holocene geohistory of the Hungarian part of the Eastern Alpine foreland in the light of recent research. Antaeus 28: 155–174.Google Scholar
  29. Danzeglocke, U., O. Jöris & B. Weninger, 2008. CalPal-2007 online [available on internet at]. Accessed 2008 November 19.
  30. Davis, B. A. S., S. Brewer, A. C. Stevenson, J. Guiot & Data Contributors, 2003. The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews 22: 1701–1716.CrossRefGoogle Scholar
  31. Fărcaş, S., J. L. de Beaulieu, M. Reille, G. Coldea, B. Diaconeasa, T. Goslar & T. Jull, 1999. First 14C datings of lateglacial and Holocene pollen sequences from the Romanian Carpathians. Comptes Rendues de l’Academie des Sciences de Paris, Sciences de la Vie 322: 799–807.CrossRefGoogle Scholar
  32. Fărcaş, S., I. Tanţău & A. Bodnariuc, 2003. The Holocene human presence in Romanian Carpathians, revealed by the palynological analysis. Wurzburger Geographische Manuskripte 63: 111–128.Google Scholar
  33. Fărcaş, S., J. L. de Beaulieu, I. Tanţău & I. A. Stoica, 2005. The absolute chronology aspects of the postglacial vegetation registered in the Capatana peat bog, Apuseni Mountains. Studii si Cercetari (Biologie) 10: 99–108.Google Scholar
  34. Fărcaş, S., F. Popescu & I. Tanţău, 2006a. Dinamica spatiala si temporala a stejarului, frasinului si carpenului in timpul Tardi- si Postglaciarului pe teritoriul Romaniei. [Temporal and spatial dynamics of oak, ash and hornbeam in the Late- and Postglacial era.] (in Romania). Ed. Presa Universitara Clujeana, Cluj-Napoca: 214 pp. ISBN: (10) 973-610-461-3.Google Scholar
  35. Fărcaş, S. I., I. Tanţău, T. M. Ursu, T. Goslar, F. Popescu & I. A. Stoica, 2006b. The study of the Late- and Postglacial dynamics of the vegetation from Pesteana, Poiana Rusca Mountains. Contributii Botanice 41: 109–118.Google Scholar
  36. Félegyházi, E. & C. Tóth, 2003. A Halas-fenék lefûzõdött medermaradvány üledékanyagának szedimentológiai, mikromineralógiai és palinológiai vizsgálata (Sedimentological and palynological study of the abandoned channel remnant deposits of the Halas-fenék). Acta Geographica Debrecina 36: 21–30.Google Scholar
  37. Feurdean, A., 2005a. Holocene forest dynamics in northwestern Romania. The Holocene 15: 435–446.CrossRefGoogle Scholar
  38. Feurdean, A., 2005b. Tracking Lateglacial and early Holocene environmental changes: a paleolimnological study of sediment at Preluca Tiganului, NW Romania. Studia Universitatis Babes-Bolyai, Geologia 50: 3–11.Google Scholar
  39. Feurdean, A. & C. Astalos, 2005. The impact of human activities in the Gutaiului Mountains Studia Universitatis Babes-Bolyai. Geologia 50: 63–72.Google Scholar
  40. Feurdean, A. & O. Bennike, 2004. Late Quaternary palaeoecological and paleoclimatological reconstruction in the Gutaiului Mountains, NW Romania. Journal of Quaternary Science 19: 809–827.CrossRefGoogle Scholar
  41. Feurdean, A. & K. J. Willis, 2008a. The usefulness of a long-term perspective in assessing current forest conservation management in the Apuseni Natural Park, Romania. Forest Ecology and Management 256: 421–430.CrossRefGoogle Scholar
  42. Feurdean, A. & K. J. Willis, 2008b. Long-term variability of Abies alba in NW Romania: implications for its conservation management. Diversity and Distributions 14: 1004–1017.CrossRefGoogle Scholar
  43. Feurdean, A., V. Mosbrugger, B. Onac, V. Polyak & D. Veres, 2007a. Younger Dryas to mid-Holocene environmental history of the lowlands of NW Transylvania, Romania. Quaternary Research 68: 364–378.CrossRefGoogle Scholar
  44. Feurdean, A., W. Wohlfarth, L. Bjorkman, I. Tanţău, O. Bennike, K. J. Willis, S. Fărcaş & A. M. Robertsson, 2007b. The influence of refugial population on Lateglacial and early Holocene vegetational changes in Romania. Review of Palaeobotany and Palynology 145: 305–320.CrossRefGoogle Scholar
  45. Feurdean, A., S. Klotz, S. Brewer, V. Mosbrugger, T. Tamas & B. Wohlfarth, 2008a. Lateglacial climate development in NW Romania – comparative results from three quantitative pollen based methods. Palaeogeography, Palaeoclimatology, Palaeoecology 265: 121–133.CrossRefGoogle Scholar
  46. Feurdean, A., S. Klotz, V. Mosbrugger & W. Wohlfarth, 2008b. Pollen-based quantitative reconstructions of Holocene climate variability in NW Romania. Palaeogeography, Palaeoclimatology, Palaeoecology 260: 494–504.CrossRefGoogle Scholar
  47. Gardner, A. R., 2002. Neolithic to Copper Age woodland impacts in northeast Hungary? Evidence from the pollen and sediment chemistry. The Holocene 12: 541–553.CrossRefGoogle Scholar
  48. Gardner, A. R., 2005. Natural environment or human impact? A palaeoecological study of two contrasting sites in north-eastern Hungary. In Gál, E., I. Juhász & P. Sümegi (eds), Environmental Archaeology in North-Eastern Hungary, Vol. 19. Varia Archaeologica Hungarica, Budapest: 87–106.Google Scholar
  49. Gil, E., E. Gilot, A. Kotarba, L. Starkel & K. Szczepanek, 1974. An Early Holocene landslide in the Beskid Niski and its significance for palaeogeographical reconstruction. Studia Geomorphologica Carpatho-Balcanica 8: 69–83.Google Scholar
  50. Granoszewski, W., M. Derkacz & A. Wójcik, 2008. Stanowisko 6: Toporowe Stawy-geneza i wiek zagłębień wytopiskowych w północnej części Doliny Suchej Wody. [Site 6: Toporowe Stawy Lakes – development and age of the glacial lakes in the northern part of the Dolina Suchej Wody Valley.] (in Polish). XV Konferencja Stratygrafia plejstocenu Polski; Plejstocen Tatr i Podhala-zlodowacenia tatrzańskie. Państwowy Instytut Geologiczny, Warszawa: 189–192.Google Scholar
  51. Harmata, K., 1987. Late-Glacial and Holocene history of vegetation at Roztoki and Tarnowiec near Jasło (Jasło-Sanok Depression). Acta Palaeobotanica 27: 43–65.Google Scholar
  52. Harmata, K., 1995. Traces of human impact reflected in pollen diagram from Tarnowiec mire near Jasło (Jasło-Sanok Depression), SE Poland. Vegetation History and Archaeobotany 4: 235–243.CrossRefGoogle Scholar
  53. Harmata, K. 2008. Przekształcenia środowiska przyrodniczego pod wpływem działalności człowieka na przełomie IV i III tysiąclecia BC w świetle badań palinologicznych w Tarnowcu w dolinie Jasiołki. [Transformations of natural environment by human activities at the turn of the 4th and 3rd centuries BC in the light of palynological researches in the Jasiołka River Basin.] (in Polish). In Machnik J. (ed.), Archeologia i środowisko naturalne Beskidu Niskiego w Karpatach. Część II. Kurimská Brázda, Vol. 4. Prace Komisji Prehistorii Karpat, Kraków: 379–384.Google Scholar
  54. Harrington, G. J., 1995. Anthropogenic impact upon the eastern Hungarian landscape. M.Sc. Thesis, University of Cambridge, Cambridge.Google Scholar
  55. Harrison, S. P., G. Yu & P. E. Tarasov, 1996. Late Quaternary lake-level record from Northern Eurasia. Quaternary Research 45: 138–159.CrossRefGoogle Scholar
  56. Horsák, M. & P. Hájková, 2005. The historical development of the White Carpathian spring fens based on palaeomalacological data. In Pouličková, A., M. Hájek & K. Rybníček (eds), Ecology and Palaeoecology of Spring Fens of the West Carpathians. Palacký University, Olomouc: 63–68.Google Scholar
  57. Horváth, F. & G. Bada, 2008. Atlas of the present-day geodynamics of the Pannonian basin: euroconform maps with explanatory text [available on internet at]. 25 October 2008.
  58. Hüttemann, H. & S. Bortenschlager, 1987. Beitrage zur Vegetationsgeschichte Tirols VI: Riesengebirge, Hohe Tatra – Zillertal, Kühtai. Ber. Nat.-med. Verein Innsbruck 74: 81–112.Google Scholar
  59. Ilon, G., I. Juhász, P. Sümegi, G. Jakab, G. Szegvári & T. Törőcsik, 2006. Mezőlak-Szélmező tőzegláp geoarcheológiai vizsgálatának eredményei. (Effects of the geo-archeological survey on the Mezőlak-Szélmező peatbog) (in Hungarian). Savaria 29: 147–215.Google Scholar
  60. Jakab, G., P. Sümegi & E. Magyari, 2004a. A new paleobotanical method for the description of Late Quaternary organic sediments (Mire-development pathways and palaeoclimatic records from S Hungary). Acta Geologica Hungarica 47: 1–37.CrossRefGoogle Scholar
  61. Jakab, G., P. Sümegi & E. Magyari, 2004b. A new quantitative method for the paleobotanical description of Late Quaternary organic sediments. Antaeus 27: 181–211.Google Scholar
  62. Jakab, G., P. Sümegi & Zs. Szántó, 2005. Késő-glaciális és holocén vízszintingadozások a Szigligeti-öbölben (Balaton) makrofosszília vizsgálatok eredményei alapján. [Late Glacial and Holocene water level changes in the Szigliget Bay, Lake Balaton based on macrofossil investigations.] (in Hungarian). Földtani Közlöny 135: 405–431.Google Scholar
  63. Jakab, G., P. Majkut, I. Juhász, S. Gulyás, P. Sümegi & T. Törőcsik, 2009. Palaeoclimatic signals and anthropogenic disturbances from the peatbog at Nagybárkány (N Hungary). Hydrobiologia. doi: 10.1007/s10750-009-9803-z.
  64. Jalut, G., A. Bodnariuc, A. Bouchette, J. J. Dedoubat, T. Otto & M. Fontugne, 2003. Holocene vegetation and human impact in the Apuseni Mountains, Central Romania. In Tonkov, S. (ed.), Aspects of Palynology and Palaeoecology (Festschrift in honour of Elissaveta Bozilova). Pensoft Publishers, Sofia-Moscow: 137–170.Google Scholar
  65. Jankovská, V., 1988. A reconstruction of the Late-Glacial and Early-Holocene evolution of forest vegetation in the Poprad basin, Czechoslovakia. Folia Geobotanica and Phytotaxonomica 23: 303–320.Google Scholar
  66. Jankovská, V., 1998. Pozdní glaciál a časný holocén podtatranských kotlin – obdoba sibiřské boreální a subboreální zóny? [Late Glacial and Early Holocene of Tatra’s foreground basins – an analogy of sibirian boreal and subboreal zone?] (in Czech]). In Benčaťová, B. & R. Hrivnák (eds), Rastliny a človek. Zvolen, Technická. Univerzita.: 89–95.Google Scholar
  67. Jankovská, V. & P. Pokorný, 2008. Forest vegetation of the las full-glacial period in the Western Carpathians (Slovakia and Czech Republic). Preslia 80: 307–324.Google Scholar
  68. Jankovská, V., P. Chromý & M. Nižnianská, 2002. Šafárka – first palaeobotanical data of the character of Last Glacial vegetation and landscape in the West Carpathians (Slovakia). Acta Palaeobotanica 42: 39–50.Google Scholar
  69. Járai-Komlódi, M., 1968. The late glacial and holocene flora of the Great Hungarian Plain. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio Biologica 9–10: 199–225.Google Scholar
  70. Járai-Komlódi, M., 1991. Late Pleistocene vegetation history in Hungary since the last interglacial. In Pécsi, M. & F. Schweitzer (eds), Quaternary Environments in Hungary. Studies in Geography in Hungary 26. Akadémiai Kiadó, Budapest: 35–46.Google Scholar
  71. Juhász, I., 2005a. An overview of the palaeobotanical data from Kelemér-Kis-Mohos-tó. In Gál, E., I. Juhász & P. Sümegi (eds), Environmental Archaeology in North-Eastern Hungary, Vol. 19. Varia Archaeologica Hungarica, Budapest: 39–45.Google Scholar
  72. Juhász, I., 2005b. Detecting antropogenic impacts in the palaeobotanical samples from Csaroda-Nyíres-tó. In Gál, E., I. Juhász & P. Sümegi (eds), Environmental Archaeology in North-Eastern Hungary, Vol. 19. Varia Archaeologica Hungarica, Budapest: 55–66.Google Scholar
  73. Juhász, I., P. Sümegi, Zs. Szántó, É. Svingor, M. Molnár & G. Jakab, 2007. The Balaton region and the Balaton uplands. In Zatykó, Cs., I. Juhász & P. Sümegi (eds), Environmental Archaeology in Transdanubia. Varia Archaeologica Hungarica, Budapest: 390 pp.Google Scholar
  74. Korponai, J., M. Braun, K. Buczkó, I. Gyulai, L. Forró, J. Nédli & I. Papp, 2009. Transition from shallow lake to wetland: A multi-proxy case study in Zalavári Pond, Balaton, Hungary. Hydrobiologia (submitted).Google Scholar
  75. Kuneš, P., B. Penánková, M. Chytrý, V. Jankovská, P. Pokorný & L. Petr, 2008. Interpretation of the last-glacial vegetation of eastern-central Europe using modern analogues from southern Siberia. Journal of Biogeography. doi: 10.1111/j1365-2699.2008.01974.x.
  76. Magny, M., C. Begeot, J. Guiot & O. Peyron, 2003. Constraining patterns of hydrological changes in Europe in response to Holocene climate cooling phases. Quaternary Science Reviews 22: 1589–1596.CrossRefGoogle Scholar
  77. Magyari, E., G. Jakab, E. Rudner & P. Sümegi, 1999. Palynological and plant macrofossil data on Late Pleistocene short-term climatic oscillations in NE-Hungary. Acta Palaeobotanica. Supplement 2: 491–502.Google Scholar
  78. Magyari, E., G. Jakab, P. Sümegi, E. Rudner & M. Molnár, 2000. Paleobotanikai vizsgálatok a keleméri Mohos-tavakon. [Palaeobotanical investigations on Mohos-lakes, Kelemér, N.-Hungary.] (in Hungarian). In Szurdoki, E. (ed.), Tőzegmohás élőhelyek Magyarországon: kutatás, kezelés, védelem (Peat Bog Habitats in Hungary: Research, Conservation, Management). Central and East European Working Group for Enhancement of Biodiversity, Miskolc: 101–131.Google Scholar
  79. Magyari, E., P. Sümegi, M. Braun, G. Jakab & M. Molnár, 2001. Retarded wetland succession: anthropogenic and climatic signals in a Holocene peat bog profile from the NE Carpathian Basin. Journal of Ecology 89: 1019–1032.CrossRefGoogle Scholar
  80. Magyari, E. K., K. Buczkó, G. Jakab, M. Braun, Z. Szántó, M. Molnár, Z. Pál & D. Karátson, 2006. Holocene palaeohydrology and environmental history in the South Harghita Mountains, Romania. Földtani Közlöny 136: 249–284.Google Scholar
  81. Magyari, E. K., G. Jakab, P. Sümegi & Gy. Szöőr, 2008. Holocene vegetation dynamics in the Bereg Plain, NE Hungary – the Báb-tava pollen and plant macrofossil record. Acta Geographica Debrecina 42: 1–16.Google Scholar
  82. Magyari, E. K., K. Buczkó, G. Jakab, M. Braun, Z. Pál & D. Karátson, 2009a. Palaeolimnology of the last crater lake in the Eastern Carpathian Mountains – a multiproxy study of Holocene hydrological changes. Hydrobiologia. doi: 10.1007/s10750-009-9801-1.
  83. Magyari, E., G. Jakab, M. Braun, K. Buczkó & M. Bálint, 2009b. High-resolution study of Late Glacial and Early Holocene tree line changes in the Southern Carpathian Mountains. European Geoscience Union General Assembly 2009, Vienna Geophysical Research Abstracts, Vol. 11. EGU2009-10549.
  84. Magyari, E. K., J. C. Chapman, D. G. Passmore, J. R. M. Allen, J. P. Huntley & B. Huntley, in press. Holocene persistence of wooded steppe in the northern Great Hungarian Plain. Journal of Biogeography.Google Scholar
  85. Mamakowa, K. & A. Wójcik, 1987. Osady organiczne środkowego Vistulianu w Jaśle-Bryłach (dolina Wisłoki). [Organic deposits of Middle Vistulian age from Jasło-Bryły (Wisłoka valley).] (in Polish). Kwartalnik Geologiczny 31: 213–214.Google Scholar
  86. Marciniak, B., 1986. Late Quaternary diatoms in the sediments of Przedni Staw Lake (Polish Tatra Mountains). Hydrobiologia 143: 255–265.CrossRefGoogle Scholar
  87. Marciniak, B. & A. Cieśla, 1983. Diatomological and geochemical studies on Late Glacial and Holocene sediments from the Przedni Staw Lake in the Dolina Pięciu Stawów Polskich Valley (Tatra Mts). Kwartalnik Geologiczny 27: 123–150.Google Scholar
  88. Margielewski, W., 2001. Late Glacial and Holocene climatic changes registered in forms and deposits of the Klakowo landslide (Beskid Średni Range, Outher Carpathians). Studia Geomorphologica Carpatho-Balcanica 35: 63–79.Google Scholar
  89. Margielewski, W., 2006. Records of the Late Glacial-Holocene palaeoenvironmental changes in landslide forms and deposits of the Beskid Makowski and Beskid Wyspowy Mts. area (Polish Outher Carpathians). Folia Quaternaria 76: 5–149.Google Scholar
  90. Margielewski, W. & V. Zernitskaya, 2003. Late Glacial-Holocene palaeoenvironmental evidence recorded in the Hajduki peat bog (Beskid Średni Mts., Outer Carpathians). In Margielewski, W. (ed.), Late Glacial-Holocene Palaeoenvironmental Changes in the Western Carpathians: Case Studies of Landslide Forms and Deposits. Folia Quaternaria 74: 57–73.Google Scholar
  91. Margielewski, W., A. Obidowicz & S. Pelc, 2003. Late Glacial-Holocene peat bog on Kotoń Mt. and its significance for reconstruction of palaeoenvironment in the Western outer Carpathians (Beskid Makowski Range, South Poland). In Margielewski, W. (ed.), Late Glacial-Holocene Palaeoenvironmental Changes in the Western Carpathians: Case Studies of Landslide Forms and Deposits. Folia Quaternaria 74: 35–56.Google Scholar
  92. Marková, S., M. Černý, D. J. Rees & E. Stuchlík, 2006. Are they still viable? Physical conditions and abundance of Daphnia pulicaria resting eggs in sediment cores from lakes in the Tatra Mountains. Biologia 61: 135–146.CrossRefGoogle Scholar
  93. Medzihradszky, Zs., 2005. Holocene vegetation history and human activity in the Kis-Balaton area, Western Hungary. Studia Botanica Hungarica 36: 77–100.Google Scholar
  94. Nagyné-Bodor, E., T. Cserny & M. Hajós, 1996. A Garancs-tó palynológiai és komplex földtani vizsgálata. [Palynological and complex geological investigations of Lake Garancs.] (in Hungarian). In Hably, L. (ed.), Emlékkötet Andreászky Gábor (1895-1967) születésének 100. évfordulójára. Studia Naturalia 9: 137–146.Google Scholar
  95. Niedziałkowska, E., E. Gilot, M. F. Pazdur & K. Szczepanek, 1985. The upper Vistula valley near Drogomyśl in the Late Vistulian and Holocene. Folia Quaternaria 56: 101–132.Google Scholar
  96. Obidowicz, A., 1990. Eine pollenanalytische d moorkundliche Studie zur Vegetationsgeschichte des Podhale-Gebietes (West-Karpaten). Acta Palaeobotanica 30: 147–219.Google Scholar
  97. Obidowicz, A., 1993. Wahania górnej granicy lasu w późnym glacjale i holocenie w Tatrach [Fluctuation of the forest limit in the Tatra Mts during the last 12000 years.] (in Polish). Dokumentacja Geograficzna Instytutu Geografii i Przestrzennego Zagospodarowania PAN 4–5: 31–43.Google Scholar
  98. Obidowicz, A., 1996. A Late Glacial-Holocene history of the formation of vegetation belts in the Tatra Mts. Acta Palaeobotanica 36: 159–206.Google Scholar
  99. Obidowicz, A. 2003. The Holocene development of forests in the Pilsko Mt. Area (Beskid Żywiecki Range, South Poland). In Margielewski, W. (ed.), Late Glacial-Holocene Palaeoenvironmental Changes in the Western Carpathians: Case Studies of Landslide Forms and Deposits. Folia Quaternaria 74: 7–15.Google Scholar
  100. Pantocsek, J., 1913. A Balaton fenékalatti mederfúrások sorozatai mélységi próbáiban talált Bacilláriák táblázatos kimutatása. [Tabular presentation of the diatoms found in the samples of the serial deep borings under the bottom of the Lake Balaton.] (in Hungarian). A Balaton Tudományos Tanulmányozásának Eredményei, Kiadja a Magyar Földrajzi Társaság Balaton Bizottsága, Budapest, Vol. 1. Part 2. Sect. 1, Supplement 4: 563.Google Scholar
  101. Pazdur, A., 2001. Radiocarbon age of the sediments from the Mount Cergowa site, Poland. In Machnik, J. (ed.), Archaeology and Natural Background of the Lower Beskid Mountains, Carpathians, Part I, Vol. 2. Prace Komisji Prehistorii Karpat, Polska Akademia Umiejętności, Kraków: 183–185.Google Scholar
  102. Péterfi, L. Şt., 1974. Preliminary notes on the subfossil and recent diatom flora of the Zănoguţa peat bog from the Retezat Mountains. Studia Universitatis Babeş-Bolyai, Cluj, Series Biologia 19: 5–17.Google Scholar
  103. Peyron, O., J. Guiot, R. Cheddadi, P. Tarasov, M. Reille, J. L. de Beaulieu, S. Bottema & V. Andrieu, 1998. Climatic reconstruction in Europe for 18000 yr BP from pollen data. Quaternary Research 49: 183–196.CrossRefGoogle Scholar
  104. Pop, E., 1932. Contribuii la istoria vegetaiei cuaternare din Transilvania. Beitrag zur quaternären Pflanzengeschichte Siebenbürgens (Rumänien). Buletinul Gradinii Botanice Muzeul Cluj 12: 20–102.Google Scholar
  105. Pop, E., 1960. Mlastinile de turba din R. S. Romina. (Die Torfmoore aus der Rumänischen volksrepublik). Editura Academiei Republicii Populare Romine: 511.Google Scholar
  106. Ralska-Jasiewiczowa, M., 1972. The forests of the Polish Carpathians in the Late Glacial and Holocene. Studia Geomorphologica Carpatho-Balcanica 6: 5–19.Google Scholar
  107. Ralska-Jasiewiczowa, M., 1980. Late-Glacial and Holocene vegetation of the Bieszczady Mts. (Polish Eastern Carpathians). Państwowe Wydawnictwo Naukowe, Kraków: 3–192.Google Scholar
  108. Ralska-Jasiewiczowa, M., 1989. Type region P-e: Bieszczady Mts. Acta Palaeobotanica 29: 31–35.Google Scholar
  109. Ralska-Jasiewiczowa, M., E. Madeyska & M. Mierzeńska, 2006. Vegetational changes in the montane grassland zone of the High Bieszczady mountains (southeast Poland) during the last millennium – pollen records from deposits in hanging peat-bogs. Vegetation History and Archaeobotany 15: 391–401.CrossRefGoogle Scholar
  110. Rónai, A., 1985. The Quaternary of the Great Hungarian Plain. Geologica Hungarica Series Geologica 21: 1–445.Google Scholar
  111. Rösch, M. & E. Fischer, 2000. A radiocarbon dated Holocene profile from the Banat Mountains (Southwestern Carpathians, Romania). Flora 195: 277–286.Google Scholar
  112. Rybníček, K. & E. Rybníčková, 1985. A palaeoecological reconstruction of precultural vegetation in the intermontane basins of the Western Carpathians. Ecologia Mediterranea 11: 27–31.Google Scholar
  113. Rybníčková, E. & K. Rybníček, 1972. Erste Ergebnisse paläogeobotanischer Untersuchungen des Moores bei Vrackov, Südmähren. Folia Geobotanica et Phytotaxonomia 7: 285–308.Google Scholar
  114. Rybníčková, E. & K. Rybníček, 1988. Holocene Palaeovegetation and Palaeoenvironment of the Kameničská kotlina Basin (Czechoslovakia). Folia Geobotanica et Phytotaxonomia 23: 285–301.Google Scholar
  115. Rybníčková, E. & K. Rybníček, 1996. Czech and Slovak Republics. In Berglund, B. E., H. J. B. Birks, M. Ralskajasiewiczowa & H. E. Wright (eds), Palaeoecological Events During the Last 15000 Years. Regional Syntheses of Palaeoecological Studies of Lakes and Mires in Europe. John Wiley & Sons, Chichester: 473–505.Google Scholar
  116. Rybníčková, E., P. Hájková & K. Rybníček, 2005. The origin and development of spring fen vegetations and ecosystems – palaeogeobotanical results. In Pouličková, A., M. Hájek & K. Rybníček (eds), Ecology and Palaeoecology of Spring Fens of the West Carpathians. Palacký University, Olomouc: 29–62.Google Scholar
  117. Schnitchen, C., E. Magyari, B. Tóthmérész, I. Grigorszky & M. Braun, 2003. Micropaleontological observations on a Sphagnum bog in East Carpathian region – testate amoebae (Rhizopoda: Testacea) and their potential use for reconstruction of micro- and macroclimatic changes. Hydrobiologia 506–509: 45–49.CrossRefGoogle Scholar
  118. Schnitchen, C., E. Magyari, D. Charman, I. Grigorszky, B. Tóthmérész & M. Braun, 2004. The possibility of reconstruction of past hydrological changes in a Sphagnum bog by the use of testate amoebae (Rhizopoda: Testacea) in the Carpathian Basin. In Wetzel, R. G. (ed.), Proceedings of the International Association of Theoretical and Applied Limnology (SIL), Vol. 29, Part 4. Science Publishers, Stuttgart, Germany: 1751–1757.Google Scholar
  119. Schnitchen, C., D. J. Charman, E. Magyari, M. Braun, I. Grigorszky, B. Tóthmérész, M. Molnár & Zs. Szántó, 2006. Reconstructing hydrological variability from testate amoebae analysis in Carpathian peatlands. Journal of Paleolimnology 36: 1–17.CrossRefGoogle Scholar
  120. Somogyi, A., M. Braun, A. Tóth & K. J. Willis, 1998. Speciation of elements in lake sediments investigation using X-ray fluorescence and inductively coupled plasma atomic emission spectrometry. X-Ray Spectrometry 27: 283.CrossRefGoogle Scholar
  121. Šporka, F., E. Štefková, P. Bitušík, R. Thompson, A. Agustí-Panareda, P. G. Appleby, J. A. Grytnes, C. Kamenik, I. Krno, A. Lami, N. L. Rose & E. Shilland, 2002. The paleolimnological analysis of sediments from high mountain lake Nižne Terianske pleso in the High Tatras (Slovakia). Journal of Paleolimnology 28: 95–109.CrossRefGoogle Scholar
  122. Środoń, A., 1987. Flora peryglacjalna z Sowlin koło Limanowej (Vistulian, Karpaty Zachodnie). [Periglacial flora of the Vistulian age from Sowliny near Limanowa (Western Carpathians).] (in Polish). Acta Palaeobotanica 27: 53–70.Google Scholar
  123. Stuchlík, E., P. Appleby, P. Bitušík, C. Curtis, J. Fott, J. Kopáček, M. Pražáková, N. Rose, O. Strunecký & R. F. Wright, 2002. Reconstruction of long-term changes in lake water chemistry, zooplankton a nad benthos of a small, acidified high-mountain lake. MAGIC modelling and palaeolimnological analysis. Water, Air, and Soil Pollution: Focus 2: 127–138.CrossRefGoogle Scholar
  124. Sümegi, P., 1999. Reconstruction of flora, soil and landscape evolution, and human impact on the Bereg Plain from late-glacial up to the present, based on palaeoecological analysis. In Hamar, J. & A. Sárkány-Kiss (eds), In the Upper Tisza Valley. Tiscia Monograph Series, Szeged: 171–203.Google Scholar
  125. Sümegi, P., 2003. New chronological and malacological data from the Quaternary of the Sárrét area, Transdanubia, Hungary. Acta Geologica Hungarica 46: 371–390.CrossRefGoogle Scholar
  126. Sümegi, P., 2005a. Palaeoenvironmental studies of the Pocsaj marsh. In Gál, E., I. Juhász & P. Sümegi (eds), Environmental Archaeology in North-Eastern Hungary, Vol. 19. Varia Archaeologica Hungarica, Budapest: 127–138.Google Scholar
  127. Sümegi, P., 2005b. The environmental history of the Jászság. In Gál, E., I. Juhász & P. Sümegi (eds), Environmental Archaeology in North-Eastern Hungary, Vol. 19. Varia Archaeologica Hungarica, Budapest: 107–114.Google Scholar
  128. Sümegi, P., 2005c. The Quaternary evolution of the Fehér Lake of Kardoskút. In Sümegi, P. (ed.), Loess and Upper Paleolithic Environment in Hungary. An Introduction to the Environmental History of Hungary. Aurea Kiadó, Nagykovácsi: 163–182.Google Scholar
  129. Sümegi, P., & S. Gulyás (eds), 2004. The Geohistory of Bátorliget Marshland – An Example for the Reconstruction of Late Quaternary Environmental Changes and Past Human Impact from the NE Part of the Carpathian Basin. Archaeolingua 16, Budapest.Google Scholar
  130. Sümegi, P., E. Magyari, P. Daniel, E. Hertelendi & E. Rudner, 1999. A kardoskúti Fehér-tó negyedidőszaki fejlődéstörténetének rekonstrukciója. (A reconstruction of the Quaternary geohistory of Fehér lake at Kardoskút) (in Hungarian). Földtani Közlöny 129: 479–519.Google Scholar
  131. Sümegi, P., E. Bodor & T. Törőcsik, 2005a. The origins of alkalisation in the Hortobágy region in the light of the palaeoenvironmental studies at Zám-Halasfenék. In Gál, E., I. Juhász & P. Sümegi (eds), Environmental Archaeology in North-Eastern Hungary, Vol. 19. Varia Archaeologica Hungarica, Budapest: 115–126.Google Scholar
  132. Sümegi, P., M. Mucsi, J. Fényes & S. Gulyás, 2005b. First radiocarbon dates from the freshwater carbonates of the Danube-Tisza interfluve. In Hum, L., S. Gulyás & P. Sümegi (eds), Environmental Historical Studies from the Late Tertiary and Quaternary of Hungary. University of Szeged: 103–118.Google Scholar
  133. Sümegi, P., G. Persaits, K. Herbich, M. Imre, Zs. Szántó & I. Juhász, 2007a. The Mezőség region. In Zatykó, Cs., I. Juhász & P. Sümegi (eds), Environmental Archaeology in Transdanubia. Varia archaeologica Hungarica, Budapest: 361–377.Google Scholar
  134. Sümegi, P., G. Persaits, Zs. Szántó, I. Juhász & G. Jakab, 2007b. Somogy Hills. In Zatykó, Cs., I. Juhász & P. Sümegi (eds), Environmental Archaeology in Transdanubia. Varia Archaeologica Hungarica, Budapest: 237–266.Google Scholar
  135. Sümegi, P., Zs. Szántó, I. Juhász, G. Szegvári & G. Jakab, 2007c. The Devecser Plain. In Zatykó, Cs., I. Juhász & P. Sümegi (eds), Environmental archaeology in Transdanubia. Varia Archaeologica Hungarica, Budapest: 309–332.Google Scholar
  136. Sümegi, P., I. Juhász, E. Magyari, G. Jakab, E. Rudner, Zs. Szántó & M. Molnár, 2008. A keleméri Mohos-tavak fejlődéstörténetének rekonstrukciója paleobotanikai vizsgálatok alapján. (Environmental history of the Mohos peat bogs based on paleobotanical researches.) (in Hungarian). In Doldogh, S. & T. G. Farkas (eds), A keleméri Mohos-tavak Kutatás, kezelés, védelem. The Mohos peat bogs in Kelemér Research, Conservation, Management. ANP füzetek IV. Aggteleki Nemzeti Park Igazgatóság. Jósvafő: 35–57.Google Scholar
  137. Svobodová, H., 1989. Rekonstrukce přírodního prostředí a osídlení v okolí Mistřína. Palynologická studie. [A reconstruction of natural environment and settlement in the environs of Mistrin. A palynological study.] (in Czech). Památky archeologické 80: 188–206.Google Scholar
  138. Szafer, W., 1948. Późny glacjał w Roztokach pod Jasłem. [Late glacial at Roztoki near Jasło.] (in Polish). Starunia 26: 1–28.Google Scholar
  139. Szalóki, I., A. Somogyi, M. Braun & A. Tóth, 1999. Investigation of geochemical composition of lake sediments using ED-XRF and ICP-AES techniques. X-Ray Spectrometry 28: 399–405.CrossRefGoogle Scholar
  140. Szántó, Zs. & Zs. Medzihradszky, 2004. Holocene environmental changes in Western Hungary. Radiocarbon 46: 691–699.Google Scholar
  141. Szczepanek, K., 1987. Late-Glacial and Holocene pollen diagrams from Jasiel in the Low Beskid Mts. (The Carpathians). Acta Palaeobotanica 27: 9–26.Google Scholar
  142. Szczepanek, K., 1989. Type region P-c: Low Beskidy Mts. In Ralska-Jasiewiczowa (ed), Environmental changes recorded in lakes and mires of Poland during the last 13000 years. Acta Palaeobotanica 29: 17–23.Google Scholar
  143. Szczepanek, K., 2001a. Late Holocene vegetation history in the Dukla Pass region (Low Beskidy, Carpathians) based on pollen and macrofossil analyses. Acta Palaeobotanica 41: 341–353.Google Scholar
  144. Szczepanek, K., 2001b. Anthropogenic vegetation changes in the region of the Dukla Pass, the Low Beskid Mountains. In Machnik, J. (ed.), Archaeology and Natural Background of the Lower Beskid Mountains, Carpathians Part I. Prace Komisji Prahistorii Karpat, Vol II. Polska Akademia Umiejętności, Kraków: 171–182.Google Scholar
  145. Szeroczyńska, K., 1984. Aaliza Cladocera w osadach niektórych jezior tatrzańskich. [Cladocera analyses of sediments from selected lakes in the Tatra Mts.] (in Polish). Prace i Studia Geograficzne 5: 93–102.Google Scholar
  146. Szeroczyńska, K. & E. Zawisza, 2007. Paleolimnologia – historia rozwoju jezior w Polsce w świetle badań fauny wioślarek. [Palaeolimnology – history of the lake development in Poland based on Cladocera analysis.] (in Polish). Studia Limnologica et Telmatologica 1: 51–60.Google Scholar
  147. Tanţău, I., 2006. Histoire de la végétation tardiglaciaire et holocène dans les Carpates Orientales (Roumanie). Ed. Presa Universitara Clujeana, Cluj-Napoca: 200 pp.Google Scholar
  148. Tanţău, I. & S. Fărcaş, 2004. Chronologie de l’histoire de la végétation holocène de Monts Rodnei (Carpates Orientales). Contributii Botanice 39: 241–250.Google Scholar
  149. Tanţău, I. & S. Fărcaş, 2005. Histoire de l’impact humain sur la végétation des Monts Harghita (Carpates Orientales). Studii si cercetari (Biologie) 10: 109–116.Google Scholar
  150. Tanţău, I., S. Fărcaş, M. Reille & J. L. de Beaulieu, 2003a. L’analyse palinologique de la sequence de Luci: nouvelles donnees concernant l’histoire de la végétation tardiglaciaire et holocène de Monts Harghitei. Contributii Botanice 38: 155–161.Google Scholar
  151. Tanţău, I., M. Reille, J. L. de Beaulieu, S. Fărcaş, S. Goslar & M. Paterne, 2003b. Vegetation History in the Eastern Romanian Carpathians: pollen analysis of two sequences from the Mohos crater. Vegetation History and Archaeobotany 12: 113–125.CrossRefGoogle Scholar
  152. Tanţău, I., M. Reille, J. L. de Beaulieu & S. Fărcaş, 2003c. Analiza palinologica a profilului turbos Mohos 1 (Muntii Harghitei). Studii si Cercetari (Biologie) 8: 33–40.Google Scholar
  153. Tanţău, I., M. Reille, S. Fărcaş & J. L. de Beaulieu, 2003d. Aspects de l’histoire de la végétation tardiglaciaire et holocène dans la région des Subcarpates de la Courbure (Subcarpates de Buzau). Studia Universitatis Babes-Bolyai (Geologia) 48: 15–26.Google Scholar
  154. Tanţău, I., M. Reille, J. L. de Beaulieu & S. Fărcaş, 2006. Late Glacial and Holocene vegetation history in the southern part of Transylvania (Romania): pollen analysis of two sequences from Avrig. Journal of Quaternary Science 21: 49–61.CrossRefGoogle Scholar
  155. Tullner, T. & T. Cserny, 2003. New aspects of lake-level changes: Lake Balaton, Hungary. Acta Geologica Hungarica 46: 215–238.CrossRefGoogle Scholar
  156. Tullner, T. & T. Cserny, 2004. A Balaton földtudományi adatbázisa. (Geoscientific Database of Lake Balaton). A Magyar Állami Földtani Intézet Évi Jelentése 2002: 47–53.Google Scholar
  157. Wacnik, A., 1995. The vegetational history of local flora and evidences of human activities recorded in the pollen diagram from site Regetovka, NE Slovakia. Acta Palaeobotanica 35: 253–274.Google Scholar
  158. Wacnik, A. 2001. Late-Holocene history of the vegetation changes based on pollen analysis of the deposits at Kružlová, Slovakia. In Machnik, J. (ed.), Archaeology and Natural Background of the Lower Beskid Mountains, Carpathians, Part I, Prace Komisji Prehistorii Karpat, Vol. 2. Polska Akademia Umiejętności, Kraków: 127–135.Google Scholar
  159. Wacnik, A., K. Szczepanek & K. Harmata, 2001. Ślady działalności człowieka neolitu i brązu obserwowane w diagramach pyłkowych z okolic Przełęczy Dukielskiej i terenów przyległych. [Signs of human activity in the Neolithic and Bronze Age noted in pollen diagrams from the Dukla Pass area.] (in Polish) In Gancarski, J. (ed.). Neolit i początki epoki brązu w Karpatach Polskich. Muzeum Podkarpackie, Krosno: 207–221.Google Scholar
  160. Wacnik, A., K. Szczepanek & K. Harmata, 2006. Przemiany roślinności jako zapis zjawisk osadniczych w okresie średniowiecza na terenach przyległych do Przełęczy Dukielskiej w Beskidzie Niskim. [Vegetational changes as a reflection of the Medieval settlement activity in the Dukla Pass surroundings, the Lower Beskid Mts.] (in Polish). In Gancarski, J. (ed.), Wczesne średniowiecze w Karpatach Polskich. Muzeum Podkarpackie, Krosno: 741–759.Google Scholar
  161. Weninger, B. & O. Jöris, 2008. A 14C age calibration curve for the last 60 ka: the Greenland-Hulu U/Th timescale and its impact on understanding the Middle to Upper Paleolithic transition in Western Eurasia. Journal of Human Evolution 55: 772–781.PubMedCrossRefGoogle Scholar
  162. Więckowski, S. & K. Szczepanek, 1963. Assimilatory pigments from subfossil fir needles (Abies alba Mill.). Acta Societatis Botanicorum Poloniae 31: 101–111.Google Scholar
  163. Willis, K. J. 1997. The impact of early agriculture upon the Hungarian Landscape. In Chapman, J. & P. M. Dolukhanov (eds), In Landscapes in Flux – Central and Eastern Europe in Antiquity. Oxbow Books, Oxford: 193–207.Google Scholar
  164. Willis, K. J., P. Sümegi, M. Braun & A. Tóth, 1995. The Late Quaternary environmental history of Bátorliget, N.E. Hungary. Palaeogeography, Palaeoclimatology, Palaeoecology 118: 25–47.CrossRefGoogle Scholar
  165. Willis, K. J., P. Sümegi, M. Braun & A. Tóth, 1997. Does soil change cause vegetation change or vice versa? A temporal perspective from Hungary. Ecology 78: 740–750.CrossRefGoogle Scholar
  166. Willis, K. J., P. Sümegi, M. Braun, K. D. Bennett & A. Tóth, 1998. Prehistoric land degradation in Hungary: who, how and why? Antiquity 72: 101–113.Google Scholar
  167. Wohlfarth, B., G. Hannon, A. Feurdean, L. Ghergari, B. P. Onac & G. Possnert, 2001. Reconstruction of climatic and environmental changes in NW Romania during the early part of the last deglaciation (15,000–13,600 cal years BP). Quaternary Science Reviews 20: 1897–1914.CrossRefGoogle Scholar
  168. Wołowski, K., A. Obidowicz & I. Wawrzycka, 2002. Pediastrum species (Chlorophyceae) in Quaternary sediments of „Żabie Oko“ peat bog in the Tatra Mts. Acta Palaeobotanica 42: 51–61.Google Scholar
  169. Yu, G. & S. P. Harrison, 1995. Lake status records from Europe: data base documentation. Paleoclimatology Publications Series Report #3, World Data Center -A for Paleoclimatology, Boulder, CO, USA: 451 pp [available on internet at].
  170. Zólyomi, B., 1952. Magyarország növénytakarójának fejlődéstörténete az utolsó jégkorszaktól. [Vegetation history of Hungary since the last glacial period.] (in Hungarian). Magyar Tudományos Akadémia Biológiai Osztályának Közleményei 1: 491–544.Google Scholar
  171. Zólyomi, B. & M. Járainé Komlódi, 2008. Fosszilis szubarktikus forrásláp Magyarországon. (A fossil subarctic peat bog in Hungary) (in Hungarian). In Doldogh, S. & T. G. Farkas (eds), A keleméri Mohos-tavak Kutatás, kezelés, védelem. The Mohos peat bogs in Kelemér Research, Conservation, Management. ANP füzetek IV. Aggteleki Nemzeti Park Igazgatóság. Jósvafő: 25–34.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Krisztina Buczkó
    • 1
    Email author
  • Enikő Katalin Magyari
    • 2
  • Peter Bitušík
    • 3
  • Agnieszka Wacnik
    • 4
  1. 1.Department of BotanyHungarian Natural History MuseumBudapestHungary
  2. 2.Hungarian Academy of SciencesPalaeonthological Research Group, Hungarian Natural History MuseumBudapestHungary
  3. 3.Research Institute & Faculty of ScienceMatthias Belius UniversityBanska BystricaSlovakia
  4. 4.W. Szafer Institute of BotanyPolish Academy of SciencesKrakówPoland

Personalised recommendations