, Volume 647, Issue 1, pp 51–61 | Cite as

Influence of functional feeding groups and spatiotemporal variables on the δ15N signature of littoral macroinvertebrates



The δ15N trophic enrichment in littoral food webs is not well known despite the importance of macroinvertebrates in lacustrine energy fluxes. We wanted to assess the influence of functional feeding group (grazer, collector, shredder, predator, predator–hematophagous, predator–sucker) and spatiotemporal variables (year, month, station of sampling) on littoral macroinvertebrate δ15N signatures. For 2 years, during the plant growth period phytophilous littoral macroinvertebrates were sampled in Lake St. Pierre, a large fluvial lake of the St. Lawrence River, Québec, Canada. The δ15N analyses showed that station was the most important factor for explaining δ15N variation, followed by sampling month and functional feeding group. The organisms sampled in the stations of the south shore, which experienced greater macrophyte abundance, slower currents, and stronger NO3 depletion exhibited higher δ15N values than those sampled on the north shore. Grazer-to-predator δ15N enrichment valued 1.6‰, which is inferior to the 3.4‰ generally admitted in food-web research. Shredders exhibited the lowest δ15N values and predators–hematophagous the highest. δ15N signature of invertebrates increased 3‰ through the summer between May and September. Only samples collected within a short period should be pooled to avoid an error value equivalent to one trophic level (1.6) enrichment. Furthermore, it is recommended not to pool macroinvertebrate samples collected at stations with differing watershed land uses.


Macroinvertebrates Food webs Littoral zone Stable isotopes St. Lawrence River 



This study was supported by NSERC-COMERN grants to F.C., D.P., and M.L. Scholarships from Collectivité Territoriale de Corse, UQAM-FARE, and GÉOTOP were helpful to F.C. We thank Serge Paquet for his help with statistics, as well as Agnieszka Adamowicz, Jean-François Hélie, and Jennifer McKay for stable isotopes analysis. Finally, we are grateful to our field assistants Catherine Bourdeau, Myrianne Joly, Renaud Manuguerra-Gagné, Roxanne Rochon, and Annabelle Warren.


  1. Allen, E. W., E. E. Prepas, S. Gabos, W. M. J. Strachan & W. Zhang, 2005. Methyl mercury concentrations in macroinvertebrate and fish from burned and undisturbed lakes on the Boreal plain. Canadian Journal of Fisheries and Aquatic Sciences 62: 1963–1977.CrossRefGoogle Scholar
  2. Anderson, C. & G. Cabana, 2005. δ15N in riverine food webs: effects of N inputs from agricultural watersheds. Canadian Journal of Fisheries and Aquatic Sciences 62: 333–340.CrossRefGoogle Scholar
  3. Anderson, C. & G. Cabana, 2007. Estimating the trophic position of aquatic consumers in river food webs using stable nitrogen isotopes. Journal of the North American Benthological Society 26: 273–285.CrossRefGoogle Scholar
  4. Cabana, G. & J. B. Rasmussen, 1994. Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372: 255–257.CrossRefGoogle Scholar
  5. Cattaneo, A., 1983. Grazing on epiphytes. Limnology and Oceanography 28: 124–132.CrossRefGoogle Scholar
  6. Clarke, A. H., 1981. Les Mollusques d’eau douce du Canada. Musée national des sciences naturelles. Musées nationaux du Canada, Ottawa, Ontario.Google Scholar
  7. Cleckner, L. B., P. J. Garrison, J. P. Hurley, M. L. Olson & D. P. Krabbenhoft, 1998. Trophic transfer of methyl mercury in the northern Florida Everglades. Biogeochemistry 40: 347–361.CrossRefGoogle Scholar
  8. Cremona, F., S. Hamelin, D. Planas & M. Lucotte. Sources of organic matter and methylmercury in littoral macroinvertebrates: a stable isotope approach. Biogeochemistry (in press).Google Scholar
  9. Cremona, F., D. Planas & M. Lucotte, 2008a. Biomass and composition of macroinvertebrate communities associated with different types of macrophyte architectures and habitats in a large fluvial lake. Fundamental and Applied Limnology 171(2): 119–130.CrossRefGoogle Scholar
  10. Cremona, F., D. Planas & M. Lucotte, 2008b. Assessing the importance of macroinvertebrate trophic dead-ends in the lower transfer of methylmercury in littoral food webs. Canadian Journal of Fisheries and Aquatic Sciences 65: 2043–2052.CrossRefGoogle Scholar
  11. Cummins, K. W., 1973. Trophic relations of aquatic insects. Annual Review of Entomology 18: 183–205.CrossRefGoogle Scholar
  12. Cyr, H. & J. A. Downing, 1988. The abundance of phytophilous invertebrates on different species of submerged macrophytes. Freshwater Biology 20: 364–374.CrossRefGoogle Scholar
  13. De Brabandere, L., T. K. Frazer & J. P. Montoya, 2007. Stable nitrogen isotope ratios of macrophytes and associated periphyton along a nitrate gradient in two subtropical, spring-fed streams. Freshwater Biology 52: 1564–1575.CrossRefGoogle Scholar
  14. DeBruyn, A. M. H. & J. B. Rasmussen, 2002. Quantifying assimilation of sewage-derived organic matter by riverine benthos. Ecological Applications 12: 511–520.CrossRefGoogle Scholar
  15. Downing, J. A. & F. H. Rigler, 1984. A Manual of Methods for the Assessment of Secondary Productivity in Fresh Waters. Blackwell Scientific Publications, St-Louis, Missouri.Google Scholar
  16. Hart, E. A. & J. R. Lovvorn, 2002. Interpreting stable isotopes from macroinvertebrate foodwebs in saline wetlands. Limnology and Oceanography 47: 580–584.CrossRefGoogle Scholar
  17. Herwig, B. R., D. H. Wahl, J. M. Dettmers & D. A. Soluk, 2007. Spatial and temporal patterns in the food web structure of a large floodplain river assessed using stable isotopes. Canadian Journal of Fisheries and Aquatic Sciences 64: 495–508.CrossRefGoogle Scholar
  18. Högberg, P., 1990. Forests losing large quantities of nitrogen have elevated 15N:14N ratios. Oecologia 884: 229–231.Google Scholar
  19. Hudon, C. & R. Carignan, 2008. Cumulative impacts of hydrology and human activities on water quality in the St. Lawrence River (Lake Saint-Pierre, Quebec, Canada). Canadian Journal of Fisheries and Aquatic Sciences 65: 1165–1180.CrossRefGoogle Scholar
  20. Jardine, T. D., R. A. Curry, K. S. Heard & R. A. Cunjak, 2005. High fidelity: isotopic relationship between stream invertebrates and their gut contents. Journal of the North American Benthological Society 24: 290–299.CrossRefGoogle Scholar
  21. Jean, M., G. Létourneau, C. Lavoie & F. Delisle, 2000. Les milieux humides et les plantes exotiques en eau douce. Bureau de coordination de Saint-Laurent Vision 2000, Sainte-Foy, Québec.Google Scholar
  22. Kaehler, S. & E. A. Pakhomov, 2001. Effects of storage and preservation on the δ13C and δ15N signatures of selected marine organisms. Marine Ecology Progress Series 219: 299–304.CrossRefGoogle Scholar
  23. Kendall, C., 1998. Chapter 16: tracing nitrogen sources and cycles in catchments. In Kendall, C. & J. J. McDonnell (eds), Isotope Tracers in Catchment Hydrology. Elsevier, Amsterdam.Google Scholar
  24. Lancaster, J. & S. Waldron, 2001. Stable isotope values of lotic invertebrates: sources of variation, experimental design, and statistical interpretation. Limnology and Oceanography 46: 723–730.CrossRefGoogle Scholar
  25. Le Louarn, H. & A. Cloarec, 1997. Insect predation on pike fry. Journal of Fish Biology 50: 366–370.CrossRefGoogle Scholar
  26. Leavitt, P. R., C. S. Brock, C. Ebel & A. Patoine, 2006. Landscape-scale effects of urban nitrogen on a chain of freshwater lakes in central North America. Limnology and Oceanography 51: 2262–2277.CrossRefGoogle Scholar
  27. Martinelli, L. A., M. C. Piccolo, A. R. Townsend, P. M. Vitousek, E. Cuevas, W. McDowell, G. P. Robertson, O. C. Santos & K. Treseder, 1999. Nitrogen stable isotopic composition of leaves and soil: tropical vs. temperate forests. Biogeochemistry 46: 45–65.Google Scholar
  28. McCutchan Jr., J. H., W. M. Lewis Jr, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.CrossRefGoogle Scholar
  29. Merritt, R. W. & K. W. Cummins (eds), 1996. An Introduction to the Aquatic Insects of North America, 3rd ed. Kendall/Hunt Publishing Company, Dubuque, Iowa.Google Scholar
  30. Miller, T. W., 2000. Tissue-specific response in δ15N in adult Pacific herring (Clupea pallasi) following an isotopic shift in diet. Environmental Biology of the Fishes 76: 177–189.CrossRefGoogle Scholar
  31. Minagawa, M. & E. Wada, 1984. Stepwise enrichment of δ15N along food chains: further evidence and the relation between δ15N and age. Geochimica and Cosmochimica Acta 48: 1135–1140.CrossRefGoogle Scholar
  32. Minshall, G. W., 1984. Chapter 12: aquatic insect-substratum relationships. In Resh, V. H. & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger Publishers, New York: 358–400.Google Scholar
  33. Pennak, R. W., 1953. Fresh-water Invertebrates of the United States. The Ronald Press Company, New York.Google Scholar
  34. Peterson, B. J., 1999. Stable isotopes as tracers of organic matter input and transfer in benthic food webs: a review. Acta Oecologica 20: 479–487.CrossRefGoogle Scholar
  35. Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.CrossRefGoogle Scholar
  36. Ponsard, S. & M. Amlou, 1999. Effects of several preservation methods on the isotopic content of Drosophila samples. Comptes rendus de l’académie des sciences 322: 35–41.PubMedGoogle Scholar
  37. Ponsard, S. & R. Arditi, 2000. What can stable isotopes (δ15N and δ13C) tell about the food web of soil macro-invertebrates? Ecology 81: 852–864.Google Scholar
  38. Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.CrossRefGoogle Scholar
  39. Power, R., K. R. R. A. Guiguer & D. R. Barton, 2003. Effects of temperature on isotopic enrichment in Daphnia magna: implications for aquatic food-web studies. Rapid Communications in Mass Spectrometry 17: 1619–1625.PubMedCrossRefGoogle Scholar
  40. Proctor, H. & G. Pritchard, 1989. Neglected predators: water mites (Acari:Parasitengona:Hydrachnellae) in freshwater communities. Journal of the North American Benthological Society 8: 100–111.CrossRefGoogle Scholar
  41. SAS Institute Inc., 1991. SAS® System for Linear Models, 3rd ed. SAS Institute Inc., Cary, North-Carolina.Google Scholar
  42. Schindler, D. E., 2002. Habitat coupling in lake ecosystems. Oikos 98: 177–189.CrossRefGoogle Scholar
  43. Strayer, D. L., 1985. The benthic micrometazoans of Mirror Lake, New Hampshire. Archiv für Hydrobiologie 72(Suppl): 287–426.Google Scholar
  44. Tate, A. W. & A. E. Hershey, 2003. Selective feeding by larval dytiscids (Coleoptera:Dytiscidae) and effects of fish predation on upper littoral zone macroinvertebrate communities of arctic lakes. Hydrobiologia 497: 13–23.CrossRefGoogle Scholar
  45. Uryu, Y., O. Malm, I. Thorntorn, I. Payne & D. Cleary, 2001. Mercury contamination of fish and its implications for other wildlife of the Tapajós Basin, Brazilian Amazon. Conservation Biology 15: 438–446.CrossRefGoogle Scholar
  46. Vadeboncoeur, Y., J. Vander Zanden & D. M. Lodge, 2002. Putting the lake back together: reintegrating benthic pathways into lake food web models. BioScience 52: 44–54.CrossRefGoogle Scholar
  47. Van Dover, C. L., J. F. Grassle, B. Fry, R. H. Garrit & V. R. Starczak, 1992. Stable isotope evidence for entry of sewage-derived organic material into a deep-sea food web. Nature (London) 360: 153–155.CrossRefGoogle Scholar
  48. Vander Zanden, J. & J. B. Rasmussen, 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066.CrossRefGoogle Scholar
  49. Vander Zanden, M. J., S. Chandra, S.-G. Park, Y. Vadeboncoeur & C. R. Goldman, 2006. Efficiencies of benthic and pelagic pathways in a subalpine lake. Canadian Journal of Fisheries and Aquatic Sciences 63: 2608–2620.CrossRefGoogle Scholar
  50. Vanderklift, M. A. & S. Ponsard, 2003. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136: 169–182.PubMedCrossRefGoogle Scholar
  51. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  52. Verardo, D. J., P. N. Froelich & A. McIntyre, 1990. Determination of organic carbon and nitrogen in marine sediments using the Carlo-Erba 1500 Analyzer. Deep-Sea Research, Part A, Oceanographic Research Papers 37: 157–165.CrossRefGoogle Scholar
  53. Vis, C., 2004. Importance relative des producteurs primaires sur la production globale du lac Saint-Pierre, un grand lac fluvial du Saint-Laurent. Ph.D. thesis, Université de Montréal, Faculté des études supérieures, Montréal, Québec.Google Scholar
  54. Vis, C., C. Hudon & R. Carignan, 2003. An evaluation of approaches used to determine the distribution and biomass of emergent and submerged aquatic macrophytes over large spatial scales. Aquatic Botany 77: 187–201.CrossRefGoogle Scholar
  55. Vis, C., C. Hudon & R. Carignan, 2006. Influence of the vertical structure of macrophyte stands on epiphyte community metabolism. Canadian Journal of Fisheries and Aquatic Sciences 63: 1014–1026.CrossRefGoogle Scholar
  56. Vis, C., C. Hudon, R. Carignan & P. Gagnon, 2007. Spatial analysis of production by macrophytes, phytoplankton and epiphyton in a large river system under different water-level conditions. Ecosystems 10: 293–310.CrossRefGoogle Scholar
  57. Walter, J. K., R. E. Bilby & B. R. Fransen, 2006. Effects of Pacific salmon spawning and carcass availability on the caddisfly Ecclisomyia conspersa (Trichoptera: Limnephilidae). Freshwater Biology 51: 1211–1218.CrossRefGoogle Scholar
  58. Webb, S. C., R. E. M. Hedges & S. J. Simpson, 1998. Diet quality influences the δ13C and δ15N of locusts and their biochemical components. The Journal of Experimental Biology 201: 2903–2911.PubMedGoogle Scholar
  59. Yoshioka, T., E. Wada & H. Hayashi, 1994. A stable isotope study on seasonal food web dynamics in a eutrophic lake. Ecology 75: 835–846.CrossRefGoogle Scholar
  60. Zah, R., P. Burgherr, S. M. Bernasconi & U. Uehlinger, 2001. Stable isotope analysis of macroinvertebrates and their food sources in a glacier stream. Freshwater Biology 46: 871–882.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.GÉOTOPUniversité du Québec à MontréalMontrealCanada

Personalised recommendations