, Volume 630, Issue 1, pp 219–229 | Cite as

Semiaquatic Heteroptera locomotion: coral treaders (Hermatobates weddi, Hermatobatidae), sea skaters (Halovelia septentrionalis, Veliidae), and water striders (Metrocoris histrio, Gerridae). Usual and unusual gaits

  • Pablo Perez GoodwynEmail author
  • Yasunori Maezono
  • Hiroki Takamatsu
  • Kenji Fujisaki
Primary research paper


Using high-speed video recordings, we carried out an analysis of the locomotion gaits of the following aquatic Heteroptera: coral treaders Hermatobates weddi (Hermatobatidae), sea striders Halovelia septentrionalis (Veliidae), and water striders Metrocoris histrio (Gerridae), in the Island of Amami Oshima, Kagoshima Prefecture, Japan. Most insects use an alternating double tripod gait for walking, whereas species of Gerridae and some Veliidae use a synchronous rowing gait. We found that H. weddi used a peculiar locomotion gait, a modification of the double tripod gait. In this special gait, two alternating dipods (mid and hind legs) are used, while the forelegs remained inactive. Contralateral mid and hind stroked simultaneously. The mid leg recovered immediately after the stroke; however, the hind leg was delayed and remained extended after the stroke. Next, the following bipod stroked, and when that mid leg finished the stroke, both ipsilateral mid and hind (the one which did not recover after the stroke) legs recovered together. Turning is also unique in H. weddi because the body axis rotation and the course turning (deflection) were clearly separated in two phases. We compared the kinematics of H. weddi pattern with the synchronous rowing pattern found in H. septentrionalis and M. histrio and discussed some biomechanical consequences. We also analyzed phylogenetic implications of this gait, and we posit that the modified double dipod gait is a uniquely derived character of the family Hermatobatidae. The synchronous rowing gait would be an autapomorphy for the clade Gerridae + Veliidae. The modified thorax, with the meso and metacoxae horizontally directed, would be a synapomorphy for the superfamily Gerroidea (Hermatobatidae, Gerridae, and Veliidae).


Biomechanics Water-walking insects Marine insect Surface tension 



We would like to thank Mr. Ichizou Tokushima for his invaluable help during the field work in Amami Island. We would like to thank Dagmar Voigt, Dmitry Musolin, and three anonymous referees for their valuable comments on an early manuscript. This research was supported by the COE twenty-first Century Program Project ‘‘Innovative Food and Environmental Studies Pioneered by Entomomimetic Sciences’’.


  1. Andersen, N. M., 1976. A comparative study of locomotion on the water surface in semiaquatic bugs (Insecta, Hemiptera, Gerromorpha). Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening 139: 337–396.Google Scholar
  2. Andersen, N. M., 1982. The semiaquatic bugs (Hemiptera, Gerromorpha). Phylogeny, adaptations, biogeography and classification. Entomonograph, Vol. 3. Scandinavian Science Press, Klampenborg: 455.Google Scholar
  3. Andersen, N. M. & T. A. Weir, 2000. The coral treaders, Hermatobates Carpenter (Hemiptera: Hermatobatidae), of Australia and New Caledonia with notes on biology and ecology. Invertebrate Systematics 14: 327–345.CrossRefGoogle Scholar
  4. Andersen, N. M. & T. A. Weir, 2004a. Australian water bugs. Their biology and identification (Hemiptera–Heteroptera, Gerromorpha & Nepomorpha). Entomonograph 14: 1–344.Google Scholar
  5. Andersen, N. M. & T. A. Weir, 2004b. Mesoveliidae, Hebridae, and Hydrometridae of Australia (Hemiptera: Heteroptera: Gerromorpha), with a reanalysis of the phylogeny of semiaquatic bugs. Invertebrate Systematics 18: 467–522.CrossRefGoogle Scholar
  6. Bush, J. W. M. & D. L. Hu, 2006. Walking on water: biolocomotion at the interface. Annual Review of Fluid Mechanics 38: 339–369.CrossRefGoogle Scholar
  7. Cheng, L. (ed.), 1976. Marine insects. North Holland Publishing Company, American Elsevier, Amsterdam, Oxford, New York: 581.Google Scholar
  8. Cheng, L., 1977. The elusive sea bug Hermatobates. Pan-Pacific Entomologist 53: 87–97.Google Scholar
  9. Cheng, L., C. M. Yang & N. M. Andersen, 2001. Guide to aquatic Heteroptera of Singapore and peninsular Malaysia. I. Gerridae and Hermatobatidae. Raffles Bulletin of Zoology 49: 129–148.Google Scholar
  10. Damgaard, J., 2008. Phylogeny of the semiaquatic bugs (Hemiptera-Heteroptera, Gerromorpha). Insect Systematics and Evolution 39: 431–460.Google Scholar
  11. Darnhofer-Demar, B., 1968. Zur Fortbewegung des Wasserläufers Gerris lacustris L. auf der Wasseroberfläche. Zoologischer Anzeiger Supplement 32: 430–439.Google Scholar
  12. Denny, M. W., 2004. Paradox lost: answers and questions about walking on water. Journal of Experimental Biology 207: 1601–1606.PubMedCrossRefGoogle Scholar
  13. Esaki, T., 1947. Notes on Hermatobates haddonii Carpenter (Hemiptera, Gerridae). Mushi 18: 49–51.Google Scholar
  14. Foster, W. A., 1989. Zonation, behaviour and morphology of the intertidal coral-treader Hermatobates (Hemiptera: Hermatobatidae) in the south-west Pacific. Zoological Journal of the Linnean Society 96: 87–105.CrossRefGoogle Scholar
  15. Franklin, R., W. J. Bell & R. Jander, 1981. Rotational locomotion by the cockroach Blattella germanica. Journal of Insect Physiology 27: 249–255.CrossRefGoogle Scholar
  16. Frantsevich, L. I. & P. A. Mokrushov, 1980. Turning and righting in Geotrupes (Coleoptera, Scarabaeidae). Journal of Comparative Physiology A 136: 279–289.CrossRefGoogle Scholar
  17. Full, R., R. Blickhan & L. Ting, 1991. Leg design in hexapedal runners. Journal of Experimental Biology 158: 369–390.PubMedGoogle Scholar
  18. Hu, D. L., B. Chan & J. W. M. Bush, 2003. The hydrodynamics of water strider locomotion. Nature 424: 663–666.PubMedCrossRefGoogle Scholar
  19. Jindrich, D. & R. Full, 1999. Many-legged maneuverability: dynamics of turning in hexapods. Journal of Experimental Biology 202: 1603–1623.PubMedGoogle Scholar
  20. Kellen, W. R., 1959. Notes on the biology of Halovelia marinarum Usinger in Samoa (Veliidae: Heteroptera). Annals of the Entomological Society of America 52: 53–62.Google Scholar
  21. Mu, L. & R. Ritzmann, 2005. Kinematics and motor activity during tethered walking and turning in the cockroach, Blaberus discoidalis. Journal of Comparative Physiology A 191: 1037–1054.CrossRefGoogle Scholar
  22. Perez Goodwyn, P. J. & K. Fujisaki, 2007. Sexual conflicts, loss of flight, and fitness gains in locomotion of polymorphic water striders. Entomologia Experimentalis et Applicata 124: 249–259.CrossRefGoogle Scholar
  23. Perez Goodwyn, P. J., D. Voigt & K. Fujisaki, 2008. Skating and diving: changes in functional morphology of the setal and microtrichial cover during ontogenesis in Aquarius paludum Fabricius (Heteroptera, Gerridae). Journal of Morphology 269: 734–744.CrossRefGoogle Scholar
  24. Polhemus, J. T. & D. A. Polhemus, 2006. The marine Heteroptera of far eastern New Guinea and adjacent archipelagoes (Insecta, Gerromorpha). Denisia (N.S.) 5: 927–982.Google Scholar
  25. Strauss, R. & M. Heisenberg, 1990. Coordination of legs during straight walking and turning in Drosophila melanogaster. Journal of Comparative Physiology A 167: 403–412.CrossRefGoogle Scholar
  26. Suter, R. B., O. Rosenberg, S. Loeb, H. Wildman & J. H. Long, 1997. Locomotion on the water surface: propulsive mechanisms of the fisher spider Dolomedes triton. Journal of Experimental Biology 200: 2523–2538.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Pablo Perez Goodwyn
    • 1
    Email author
  • Yasunori Maezono
    • 1
  • Hiroki Takamatsu
    • 1
  • Kenji Fujisaki
    • 1
  1. 1.Division of Applied Biosciences, Laboratory of Insect Ecology, Graduate School of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations