, Volume 630, Issue 1, pp 63–73 | Cite as

Base-line variations in stable isotope values in an Arctic marine ecosystem: effects of carbon and nitrogen uptake by phytoplankton

  • Tobias Tamelander
  • Caroline Kivimäe
  • Richard G. J. Bellerby
  • Paul E. Renaud
  • Svein Kristiansen
Primary research paper


Stable isotope values are useful for elucidating C and N cycling and pathways in marine and aquatic ecosystems. Variations in the base-line isotope values, the δ13C and δ15N values of phytoplankton, put constraints on their usefulness as tracers for trophic interactions and sources of organic matter in food web studies, however. We investigated the C and N stable isotope values of suspended particulate organic matter in relation to uptake of total dissolved inorganic carbon and nitrate, chlorophyll a concentration and the isotope composition of dissolved inorganic carbon in an Arctic marine environment (northern Barents Sea) in order to improve the understanding of factors regulating the variation in stable isotope values at the base of the marine food web. The stable isotope values of water-column suspended particulate organic carbon (δ13Corg) and nitrogen (δ15Norg) varied from −28.3‰ to −20.2‰ and 2.9‰ to 8.3‰, respectively, among stations sampled during spring and summer. δ13Corg was not linearly related to carbon uptake, but the values were on average 3‰ higher at stations in a late-bloom stage, characterised by higher carbon uptake compared to early-bloom stations. Accumulation of phytoplankton biomass had a strong impact on δ13Corg values, reflected in a positive relationship between δ13Corg and chlorophyll a concentration. δ15Norg was positively related to the percentage of nitrate taken up from initial (winter) concentrations. These results indicate a strong relationship between bloom progression and isotope composition of particulate organic C and N pools. Synoptic data on stable isotope compositions, nutrient concentrations and phytoplankton biomass therefore improve the interpretation of isotope values when these are compared across pools with different turnover times, such as phytoplankton and consumers or suspended and sedimentary organic matter.


Stable isotopes Dissolved inorganic carbon Nitrate Chlorophyll a Phytoplankton Particulate organic carbon and nitrogen 



This study was funded through the Norwegian Research Council, NORDKLIMA Programme (CABANERA Project 155936/700), the European Commission within the 6th Framework (EU FP6 CARBOOCEAN Integrated Project, Contract no. 511176), and the US National Science Foundation (OPP-0326371 to PER). We are indebted to the crew of R/V Jan Mayen (University of Tromsø) for assistance during the field campaigns and to U. Ninnemann and W. Breyholtz (Department of Earth Science, University of Bergen) for δ13CDIC analyses. Two anonymous reviewers are kindly acknowledged for comments that improved the quality of this paper.


  1. Aberle, N. & A. M. Malzahn, 2007. Interspecific and nutrient-dependent variations in stable isotope fractionation: experimental studies simulating pelagic multitrophic systems. Oecologia 154: 291–303.PubMedCrossRefGoogle Scholar
  2. Altabet, M. A., 1988. Variations in nitrogen isotopic composition between sinking and suspended particles—implications for nitrogen cycling and particle transformation in the open ocean. Deep-Sea Research Part A 35: 535–554.CrossRefGoogle Scholar
  3. Altabet, M. A. & L. F. Small, 1990. Nitrogen isotopic-ratios in fecal pellets produced by marine zooplankton. Geochimica et Cosmochimica Acta 54: 155–163.CrossRefGoogle Scholar
  4. Bacastow, R. B., C. D. Keeling, T. J. Lueker, M. Wahlen & W. G. Mook, 1996. The 13C Suess effect in the world surface oceans and its implications for oceanic uptake of CO2: analysis of observations at Bermuda. Global Biogeochemical Cycles 10: 335–346.CrossRefGoogle Scholar
  5. Bertrand, P., T. F. Pedersen, P. Martinez, S. Calvert & G. Shimmield, 2000. Sea level impact on nutrient cycling in coastal upwelling areas during deglaciation: evidence from nitrogen isotopes. Global Biogeochemical Cycles 14: 341–355.CrossRefGoogle Scholar
  6. Burkhardt, S., U. Riebesell & I. Zondervan, 1999. Effects of growth rate, CO2 concentration, and cell size on the stable carbon isotope fractionation in marine phytoplankton. Geochimica et Cosmochimica Acta 63: 3729–3741.CrossRefGoogle Scholar
  7. Deniro, M. J. & S. Epstein, 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45: 341–351.CrossRefGoogle Scholar
  8. Elzenga, J. T. M., H. B. A. Prins & J. Stefels, 2000. The role of extracellular carbonic anhydrase activity in inorganic carbon utilization of Phaeocystis globosa (Prymnesiophyceae): a comparison with other marine algae using the isotopic disequilibrium technique. Limnology and Oceanography 45: 372–380.Google Scholar
  9. Fry, B. & S. C. Wainright, 1991. Diatom sources of 13C-rich carbon in marine food webs. Marine Ecology Progress Series 76: 149–157.CrossRefGoogle Scholar
  10. Gibson, J. A. E., T. Trull, P. D. Nichols, R. E. Summons & A. McMinn, 1999. Sedimentation of 13C-rich organic matter from Antarctic sea-ice algae: a potential indicator of past sea-ice extent. Geology 27: 331–334.CrossRefGoogle Scholar
  11. Goñi, M. A., M. B. Yunker, R. W. Macdonald & T. I. Eglinton, 2000. Distribution and sources of organic biomarkers in arctic sediments from the Mackenzie River and Beaufort shelf. Marine Chemistry 71: 23–51.CrossRefGoogle Scholar
  12. Guo, L. D., T. Tanaka, D. Wang, N. Tanaka & A. Murata, 2004. Distributions, speciation and stable isotope composition of organic matter in the southeastern Bering Sea. Marine Chemistry 91: 211–226.CrossRefGoogle Scholar
  13. Hobson, K. A., W. G. Ambrose & P. E. Renaud Jr, 1995. Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: insights from δ13C and δ15N analysis. Marine Ecology Progress Series 128: 1–10.CrossRefGoogle Scholar
  14. Hoch, M. P., R. A. Snyder, L. A. Cifuentes & R. B. Coffin, 1996. Stable isotope dynamics of nitrogen recycled during interactions among marine bacteria and protists. Marine Ecology Progress Series 132: 229–239.CrossRefGoogle Scholar
  15. Hodal, H. & S. Kristiansen, 2008. The importance of small-celled phytoplankton in spring blooms at the marginal ice zone in the northern Barents Sea. Deep-Sea Research II 55: 2176–2185.CrossRefGoogle Scholar
  16. Holm-Hansen, O. & B. Riemann, 1978. Chlorophyll a determination—improvements in methodology. Oikos 30: 438–447.CrossRefGoogle Scholar
  17. Horrigan, S. G., J. P. Montoya, J. L. Nevins & J. J. McCarthy, 1990. Natural isotopic composition of dissolved inorganic nitrogen in the Chesapeake Bay. Estuarine, Coastal and Shelf Science 30: 393–410.CrossRefGoogle Scholar
  18. Johnson, K. M., K. D. Wills, D. B. Butler, W. K. Johnson & C. S. Wong, 1993. Coulometric total carbon-dioxide analysis for marine studies—maximizing the performance of an automated gas extraction system and coulometric detector. Marine Chemistry 44: 167–187.CrossRefGoogle Scholar
  19. Joint, I., A. P. Rees & E. M. S. Woodward, 2001. Primary production and nutrient assimilation in the Iberian upwelling in August 1998. Progress in Oceanography 51: 303–320.CrossRefGoogle Scholar
  20. Kaltin, S., L. G. Anderson, K. Olsson, A. Fransson & M. Chierici, 2002. Uptake of atmospheric carbon dioxide in the Barents Sea. Journal of Marine Systems 38: 31–45.CrossRefGoogle Scholar
  21. Kivimäe, C., 2007. Carbon and oxygen fluxes in the Barents and Norwegian Seas: Production, air–sea exchange and budget calculations. PhD Thesis, University of Bergen.Google Scholar
  22. Kopczynska, E. E., L. Goeyens, M. Semeneh & F. Dehairs, 1995. Phytoplankton composition and cell carbon distribution in Prydz Bay, Antarctica—relation to organic particulate matter and its δ13C values. Journal of Plankton Research 17: 685–707.CrossRefGoogle Scholar
  23. Korb, R. E., J. A. Raven, A. M. Johnston & J. W. Leftley, 1996. Effects of cell size and specific growth rate on stable carbon isotope discrimination by two species of marine diatom. Marine Ecology Progress Series 143: 283–288.CrossRefGoogle Scholar
  24. Kristiansen, S., T. Farbrot & P. A. Wheeler, 1994. Nitrogen cycling in the Barents Sea—seasonal dynamics of new and regenerated production in the marginal ice-zone. Limnology and Oceanography 39: 1630–1642.Google Scholar
  25. Kukert, H. & U. Riebesell, 1998. Phytoplankton carbon isotope fractionation during a diatom spring bloom in a Norwegian fjord. Marine Ecology Progress Series 173: 127–137.CrossRefGoogle Scholar
  26. Laws, E. A., B. N. Popp, R. R. Bidigare, M. C. Kennicutt & S. A. Macko, 1995. Dependence of phytoplankton carbon isotopic composition on growth-rate and [CO2]aq—theoretical considerations and experimental results. Geochimica et Cosmochimica Acta 59: 1131–1138.CrossRefGoogle Scholar
  27. Loeng, H., 1991. Features of the physical oceanographic conditions of the Barents Sea. Polar Research 10: 5–18.CrossRefGoogle Scholar
  28. Lynch-Stieglitz, J., T. F. Stocker, W. S. Broecker & R. G. Fairbanks, 1995. The influence of air–sea exchange on the isotopic composition of oceanic carbon—observations and modeling. Global Biogeochemical Cycles 9: 653–665.CrossRefGoogle Scholar
  29. Macko, S. A., M. H. Engel & Y. R. Qian, 1994. Early diagenesis and organic-matter preservation—a molecular stable carbon-isotope perspective. Chemical Geology 114: 365–379.CrossRefGoogle Scholar
  30. Mariotti, A., J. C. Germon, P. Hubert, P. Kaiser, R. Letolle, A. Tardieux & P. Tardieux, 1981. Experimental-determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant and Soil 62: 413–430.CrossRefGoogle Scholar
  31. Mook, W. G., J. C. Bommerson & W. H. Staverman, 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon-dioxide. Earth and Planetary Science Letters 22: 169–176.CrossRefGoogle Scholar
  32. Needoba, J. A., N. A. Waser, P. J. Harrison & S. E. Calvert, 2003. Nitrogen isotope fractionation in 12 species of marine phytoplankton during growth on nitrate. Marine Ecology Progress Series 255: 81–91.CrossRefGoogle Scholar
  33. Needoba, J. A., A. Marchetti, M. F. Henry, P. J. Harrison, C. S. Wong, W. K. Johnson & T. F. Pedersen, 2006. Stable nitrogen isotope dynamics of a mesoscale iron enrichment experiment in the NE subarctic Pacific. Deep-Sea Research II 53: 2214–2230.CrossRefGoogle Scholar
  34. O’Brien, M. C., R. W. Macdonald, H. Melling & K. Iseki, 2006. Particle fluxes and geochemistry on the Canadian Beaufort Shelf: implications for sediment transport and deposition. Continental Shelf Research 26: 41–81.CrossRefGoogle Scholar
  35. O’Reilly, C. M., R. E. Hecky, A. S. Cohen & P. D. Plisnier, 2002. Interpreting stable isotopes in food webs: recognizing the role of time averaging at different trophic levels. Limnology and Oceanography 47: 306–309.Google Scholar
  36. Olsen, A., A. M. Omar, R. G. J. Bellerby, T. Johannessen, U. Ninnemann, K. R. Brown, K. A. Olsson, J. Olafsson, G. Nondal, C. Kivimäe, S. Kringstad, C. Neill & S. Olafsdottir, 2006. Magnitude and origin of the anthropogenic CO2 increase and 13C Suess effect in the Nordic seas since 1981. Global Biogeochemical Cycles 20: GB3027.CrossRefGoogle Scholar
  37. Omar, A. M., T. Johannessen, A. Olsen, S. Kaltin & F. Rey, 2007. Seasonal and interannual variability of the air–sea CO2 flux in the Atlantic sector of the Barents Sea. Marine Chemistry 104: 203–213.CrossRefGoogle Scholar
  38. Ostrom, N. E., S. A. Macko, D. Deibel & R. J. Thompson, 1997. Seasonal variation in the stable carbon and nitrogen isotope biogeochemistry of a coastal cold ocean environment. Geochimica et Cosmochimica Acta 61: 2929–2942.CrossRefGoogle Scholar
  39. Pennock, J. R., D. J. Velinsky, J. M. Ludlam, J. H. Sharp & M. L. Fogel, 1996. Isotopic fractionation of ammonium and nitrate during uptake by Skeletonema costatum: implications for delta 15N dynamics under bloom conditions. Limnology and Oceanography 41: 451–459.Google Scholar
  40. Popp, B. N., E. A. Laws, R. R. Bidigare, J. E. Dore, K. L. Hanson & S. G. Wakeham, 1998. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochimica et Cosmochimica Acta 62: 69–77.CrossRefGoogle Scholar
  41. Quay, P. & J. Stutsman, 2003. Surface layer carbon budget for the subtropical N. Pacific: δ13C constraints at station ALOHA. Deep-Sea Research I 50: 1045–1061.CrossRefGoogle Scholar
  42. Rau, G. H., J. L. Teyssie, F. Rassoulzadegan & S. W. Fowler, 1990. 13C/12C and 15N/14N variations among size-fractionated marine particles—implications for their origin and trophic relationships. Marine Ecology Progress Series 59: 33–38.CrossRefGoogle Scholar
  43. Rau, G. H., T. Takahashi, D. J. Desmarais, D. J. Repeta & J. H. Martin, 1992. The relationship between δ13C of organic-matter and [CO2(aq)] in ocean surface water data from a JGOFS site in the northeast Atlantic-ocean and a model. Geochimica et Cosmochimica Acta 56: 1413–1419.PubMedCrossRefGoogle Scholar
  44. Reigstad, M., P. Wassmann, C. Wexwls Riser, S. Øygarden & F. Rey, 2002. Variations in hydrography, nutrients and chlorophyll a in the marginal ice-zone and the central Barents Sea. Journal of Marine Systems 38: 9–29.CrossRefGoogle Scholar
  45. Rolff, C., 2000. Seasonal variation in delta δ13C and δ15N of size-fractionated plankton at a coastal station in the northern Baltic proper. Marine Ecology Progress Series 203: 47–65.CrossRefGoogle Scholar
  46. Sigman, D. M., K. L. Casciotti, M. Andreani, C. Barford, M. Galanter & J. K. Bohlke, 2001. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Analytical Chemistry 73: 4145–4153.PubMedCrossRefGoogle Scholar
  47. Smith, S. L., S. M. Henrichs & T. Rho, 2002. Stable C and N isotopic composition of sinking particles and zooplankton over the southeastern Bering Sea shelf. Deep-Sea Research Part II 49: 6031–6050.CrossRefGoogle Scholar
  48. Søreide, J. E., H. Hop, M. L. Carroll, S. Falk-Petersen & E. N. Hegseth, 2006a. Seasonal food web structures and sympagic-pelagic coupling in the European Arctic revealed by stable isotopes and a two-source food web model. Progress in Oceanography 71: 59–87.CrossRefGoogle Scholar
  49. Søreide, J. E., T. Tamelander, H. Hop, K. A. Hobson & I. Johansen, 2006b. Sample preparation effects on stable C and N isotope values: a comparison of methods in arctic marine food web studies. Marine Ecology Progress Series 328: 17–28.CrossRefGoogle Scholar
  50. Sturluson, M., T. G. Nielsen & P. Wassmann, 2008. Bacterial abundance, biomass and production during spring blooms in the northern Barents Sea. Deep-Sea Research II 55: 2186–2198.CrossRefGoogle Scholar
  51. Sundfjord, A., I. Fer, Y. Kasajima & H. Svendsen, 2007. Observations of turbulent mixing and hydrography in the marginal ice zone of the Barents Sea. Journal of Geophysical Research-Oceans 112: C05008.CrossRefGoogle Scholar
  52. Tamelander, T., P. E. Renaud, H. Hop, M. L. Carroll, W. G. Ambrose & K. A. Hobson Jr, 2006a. Trophic relationships and pelagic-benthic coupling during summer in the Barents Sea Marginal Ice Zone revealed by stable carbon and nitrogen isotope measurements. Marine Ecology Progress Series 310: 33–46.CrossRefGoogle Scholar
  53. Tamelander, T., J. E. Søreide, H. Hop & M. L. Carroll, 2006b. Fractionation of stable isotopes in the arctic marine copepod Calanus glacialis: effects on the isotopic composition of marine particulate organic matter. Journal of Experimental Marine Biology and Ecology 333: 231–240.CrossRefGoogle Scholar
  54. Tamelander, T., M. Reigstad, H. Hop, M. C. Carroll & P. Wassmann, 2008. Pelagic and sympagic contribution of organic matter to zooplankton and vertical export in the Barents Sea marginal ice zone. Deep-Sea Research II 55: 2330–2339.CrossRefGoogle Scholar
  55. Tortell, P. D., J. R. Reinfelder & F. M. M. Morel, 1997. Active uptake of bicarbonate by diatoms. Nature 390: 243–244.CrossRefGoogle Scholar
  56. Tortell, P. D., G. H. Rau & F. M. M. Morel, 2000. Inorganic carbon acquisition in coastal Pacific phytoplankton communities. Limnology and Oceanography 45: 1485–1500.CrossRefGoogle Scholar
  57. Tremblay, J. E., C. Michel, K. A. Hobson, M. Gosselin & N. M. Price, 2006. Bloom dynamics in early opening waters of the Arctic Ocean. Limnology and Oceanography 51: 900–912.CrossRefGoogle Scholar
  58. Waser, N. A., K. D. Yin, Z. M. Yu, K. Tada, P. J. Harrison, D. H. Turpin & S. E. Calvert, 1998. Nitrogen isotope fractionation during nitrate, ammonium and urea uptake by marine diatoms and coccolithophores under various conditions of N availability. Marine Ecology Progress Series 169: 29–41.CrossRefGoogle Scholar
  59. Wassmann, P., D. Slagstad, C. Wexels Riser & M. Reigstad, 2006. Modelling the ecosystem dynamics of the Barents Sea including the marginal ice zone II. Carbon flux and interannual variability. Journal of Marine Systems 59: 1–24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Tobias Tamelander
    • 1
    • 2
  • Caroline Kivimäe
    • 3
    • 6
  • Richard G. J. Bellerby
    • 3
    • 4
  • Paul E. Renaud
    • 5
  • Svein Kristiansen
    • 1
  1. 1.Department of Aquatic BioSciencesUniversity of TromsøTromsøNorway
  2. 2.Norwegian Polar InstituteTromsøNorway
  3. 3.Bjerknes Centre for Climate ResearchUniversity of BergenBergenNorway
  4. 4.Geophysical InstituteUniversity of BergenBergenNorway
  5. 5.Akvaplan-nivaTromsøNorway
  6. 6.National University of Ireland GalwayGalwayIreland

Personalised recommendations