, 628:203 | Cite as

Use of macroinvertebrate-based multimetric indices for water quality evaluation in Spanish Mediterranean rivers: an intercalibration approach with the IBMWP index

  • Antoni MunnéEmail author
  • Narcís Prat
Primary research paper


For the European Parliament and Commission to implement the Water Framework Directive (WFD), the water-quality indices that are currently used in Europe need to be compared and calibrated. This will facilitate the comparative assessment of ecological status throughout the European Union. According to the WFD, biologic indices should respond consistently to human impacts, using multimetric approaches and water-quality classification boundaries adjusted to a common set of normative definitions. The European Commission has started an intercalibration exercise to review biologic indices and harmonize class boundaries. We used data from rivers in Spain to compare the IBMWP (Iberian Biological Monitoring Working Party) index, which is commonly used by water authorities in Spain and by several research centers, with the Intercalibration Common Multimetric Index (ICM-Star), which was used as a standard in the intercalibration exercise. We also used data from Spanish rivers to compare the multimetric indices ICM-7 (based on quantitative data) and ICM-9 (based on qualitative data) with the IBMWP. ICM-7 and ICM-9 were proposed by the Mediterranean Geographical Intercalibration Group (Med-GIG). Additionally, we evaluated two new multimetric indices, developed specifically for macroinvertebrate communities inhabiting Mediterranean river systems. One of these is based on quantitative data (ICM-10), while the other is based on qualitative data (ICM-11a). The results show that the IBMWP index responds well to the stressor gradient present in our data, and correlates well with ICM-Star. Moreover, the IBMWP quality class boundaries were consistent with the intercalibration requirements of the WFD. However, multimetric indices showed a more linear relation with the stressor gradient in our data, and less variation in reference values. In addition, they may provide more statistical power for detecting potential environmental impacts. Multimetric indices produced similar results for quantitative and qualitative data. Thus, ICM-10 (also named IMMi-T) and ICM-11a (also named IMMi-L) indices could be used to meet European Commission requirements for assessing the water quality in Spanish Mediterranean rivers.


Water framework directive Multimetric indices Intercalibration IBMWP Biological quality Macroinvertebrate Mediterranean rivers 



We are grateful for the use of the database of the GUADALMED I and II Projects (HID98-0323-C05 and REN2001-3438-C07), and also for the data obtained in diverse environmental assessment projects in several Catalan rivers performed by the FEM group of the Ecology Department of the University of Barcelona, supported by the Diputació de Barcelona. We wish to express our gratitude to all the members of both the working groups, without which we would not have had free access to the data that are now available on the internet ( Special thanks to Pau Fortuño for his work on reviewing the database, to Dr. Jean-Gabriel Wasson for his contribution to the criteria for reference site selection, and to Drs. Andrea Buffagni and Stefanía Erba for their guidance in calculating the multimetric indices, using the ICM-Easy software. We especially thank four anonymous reviewers and to Dr. Joel Trexler for their kind suggestions and profitable help to improve the statistical analysis and the results interpretation. Also, Dr. Emili Garcia-Berthou provided useful information about the statistical analysis and model comparison.

Supplementary material

10750_2009_9757_MOESM1_ESM.doc (98 kb)
(DOC 98 kb)


  1. ACA-Agència Catalana de l’Aigua, 2005. Caracteritzación de masas de agua y análisis del riesgo de incumplimiento de los objetivos de la Directiva Marco del Agua (2000/60/CE) en Catalunya (cuencas inter e intracomunitarias). Agència Catalana de l’Aigua. Departament de Medi Ambient i Habitatge de la Generalitat de Catalunya. (Report) October, 2005. 860 pp.Google Scholar
  2. ACA-Agència Catalana de l’Aigua, 2006a. BIORI: Protocol d’avaluació de la qualitat biológica dels rius. Agència Catalana de l’Aigua. Departament de Medi Ambient i Habitatge de la Generalitat de Catalunya. (Report) April, 2006. 89 pp.Google Scholar
  3. ACA-Agència Catalana de l’Aigua, 2006b. Informe testeig (2006) protocols DMA a la conca de la Tordera. Agència Catalana de l’Aigua. Departament de Medi Ambient i Habitatge de la Generalitat de Catalunya. (Report) November, 2006. 8 pp.Google Scholar
  4. AFNOR-Association Française de Normalisation, 1992. Détermination de la qualité biologique des eaux courantes: Indice Biologique Global Normalisé. Norme NF T: 90–350.Google Scholar
  5. Akaike, H., 1978. A Bayesian analysis of the minimum AIC procedure. Annals of the Institute of Statistical Mathematics 30: 9–14.CrossRefGoogle Scholar
  6. Alba-Tercedor, J. & N. Prat, 1992. Spanish Experience in the Use of Macroinvertebrates as Biological Pollution Indicators. River Water Quality Assessment and Control. CCEE, Brussels, Belgium.Google Scholar
  7. Alba-Tercedor, J. & A. Pujante, 2000. Running-water biomonitoring in Spain: opportunities for a predictive approach. In Wright, J. F., D. W. Sutcliffe & M. T. Furse (eds), Assessing the Biological Quality of Fresh Waters–RIVPACS and other techniques. FBA. Ambleside: 207–216.Google Scholar
  8. Alba-Tercedor, J. & A. Sánchez-Ortega, 1988. Un método rápido y simple para evaluar la calidad biológica de las aguas corrientes basado en el de Hellawell (1978). Limnetica 4: 51–56.Google Scholar
  9. Alba-Tercedor, J., P. Jáimez-Cuéllar, M. Álvarez, J. Avilés, N. Bonada, J. Casas, A. Mellado, M. Ortega, I. Pardo, N. Prat, M. Rieradevall, S. Robles, C. E. Sáinz-Cantero, A. Sánchez-Ortega, M. L. Suárez, M. Toro, M. R. Vidal-Albarca, S. Vivas & C. Zamora-Muñoz, 2004. Caracterización del estado ecológico de los ríos mediterráneos ibéricos mediante el índice IBMWP (antes BMWP’). Limnetica (2002) 21(3–4): 175–185.Google Scholar
  10. APAT-IRSA/CNR, 2004. Indice Biotico Esteso (IBE). APAT Manuali e linee guida 29/2003. APAT-IRSA/CNR, Metodi analitici per il controllo della qualità delle acque 3: 1115–1136.Google Scholar
  11. AQEM Consortium, 2002. Manual for the application of the AQEM system. A comprehensive method to assess European streams using benthic macroinvertebrates. Developed for the purpose of the Water Framework Directive. Version 1.0. February 2002. 202 pp.Google Scholar
  12. Armitage, P. D., D. Moss, J. F. Wright & M. T. Furse, 1983. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Research 17: 333–347.CrossRefGoogle Scholar
  13. Armitage, P. D., I. Pardo, M. T. Furse & F. J. Wright, 1990. Assessment and prediction of biological quality. A demonstration of a British macroinvrtebrate-based method in two Spanish rivers. Limnetica 6: 147–156.Google Scholar
  14. Bailey, R. C., M. G. Kennedy, M. Z. Dervish & R. M. Taylor, 1998. Biological assessment of freshwater ecosystems using a reference condition approach: comparing predicted and actual benthic invertebrate communities in Yukon streams. Freshwater Biology 39(4): 765–774.CrossRefGoogle Scholar
  15. Barbour, M. T., J. B. Stribling & J. R. Karr, 1995. Multimetric approach for establishing biocriteria and measuring biological condition. In Davis, W. S. & T. P. Simon (eds), Biological Assessment and Criteria. Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, London, Tokyo: 63–77.Google Scholar
  16. Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, 2nd ed. EPA841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.Google Scholar
  17. Bloch, H., 1999. European Water Policy Facing the New Millennium: The Water Framework Directive. Assessing the ecological Integrity of Running Waters. Viena. Austria: 9–11.Google Scholar
  18. Böhmer, J., C. Rawer-Jost & A. Zenker, 2004. Multimetric assessment of data provided by water managers from Germany: assessment of several different types of stressors with macrozoobenthos communities. Hydrobiologia 516: 215–228.CrossRefGoogle Scholar
  19. Bonada, N., N. Prat, A. Munné, M. Rieradevall, J. Alba-Tercedor, M. Álvarez, J. Avilés, J. Casas, P. Jáimez-Cuéllar, A. Mellado, G. Moyà, I. Pardo, S. Robles, G. Ramón, M. L. Suárez, M. Toro, M. R. Vidal-Albarca, D. Vivas & C. Zamora-Muñoz, 2004. Criterios para la selección de condiciones de referencia en los ríos mediterráneos. Resultados del proyecto GUADALMED. Limnetica (2002) 21(3–4) : 99–114.Google Scholar
  20. Bonada, N., N. Prat, V. H. Resh & B. Statzner, 2006. Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annual Review of Entomology 51: 495–523.PubMedCrossRefGoogle Scholar
  21. Bonada, N., M. Rieradevall & N. Prat, 2007. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia 589: 91–106.CrossRefGoogle Scholar
  22. Buffagni, A. & S. Erba, 2004. A simple procedure to harmonize class boundaries of European assessment systems. Discussion paper for the Intercalibration process-WFD CIS WG 2.A ECOSTAT, 6 February 2004. 21 pp.Google Scholar
  23. Buffagni, A. & M. T. Furse, 2006. Intercalibration and comparison—major results and conclusions from the STAR project. Hydrobiologia 566: 357–364.CrossRefGoogle Scholar
  24. Buffagni, A., S. Erba, S. Birk, M. Cazzola, C. Feld, T. Ofenbock, J. Murray-Bligh, M. T. Furse, R. Clarke, D. Hering, H. Soszka & W. Van De Bund, 2005. Towards european inter-calibration for the water framework directive: procedures and examples for different river types from the E.C. project STAR, 11th STAR deliverable. STAR contract No: EVK1-CT 2001-00089. Rome (Italy). Quad. Ist. Ric. Acque 123, Rome (Italy), IRSA, 460 pp.Google Scholar
  25. Buffagni, A., S. Erba, M. Cazzola, J. Murria-Bligh, H. Soszka & P. Genomi, 2006. The Star common metrics approach to the WFD intercalibration process: full application for small, lowland rivers in three European countries. Hydrobiologia 566: 379–399.CrossRefGoogle Scholar
  26. Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-theoretic Approach, 2nd ed. Springer-Verlag, New York, NY, USA: 488.Google Scholar
  27. Cairns, J. Jr. & J. R. Pratt, 1993. A history of biological monitoring using benthic macroinvertebrates. In Rosenberg, D. M. & V. Resh (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman & Hall, New York-London: 10–27.Google Scholar
  28. Carter, J. L. & V. H. Resh, 2001. After site selection and before data análisis: sampling, sorting, and laboratory procedures used in stream benthic macroinvertebrate monitoring programs by USA state agencies. Journal of the North American Benthological Society 20: 658–682.CrossRefGoogle Scholar
  29. CHE-Confederación Hidrográfica del Ebro, 1999. Objetivos de estado ecológico en los ríos de la cuenca del Ebro. Informes técnicos. 59 pp.
  30. CIS WG 2.A Ecological Status (ECOSTAT), 2004. Guidance on the Intercalibration Process. Agreed version of WG 2.A Ecological Status meeting held 7-8 October 2004 in Ispra Version 4.1. 14 October 2004. Ispra.Google Scholar
  31. Conrad, M., 1979. Ecosystem stability and bifurcation in the light of adaptability theory. In Gurel, O. & O. Rössler (eds), Bifurcation Theory and Its Applications in Scientific Disciplines. New York Academy of Sciences, New York: 465–482.Google Scholar
  32. Davis, W. S. & T. P. Simon, 1995. Biological Assessment and Criteria. Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, London, Tokyo.Google Scholar
  33. De Pauw, N. & H. A. Hawkes, 1993. Biological monitoring of river water quality. In Willey, W. J. & S. Judd (eds), Proceedings of the “Freshwater Europe Symposium on River Water Quality Monitoring and Control”. Aston University Publishers, Aston, UK: 87–111.Google Scholar
  34. De Pauw, N. & G. Vanhooren, 1883. Method for biological quality assessment of watercourses in Belgium. Hydrobiologia 100: 153–168.CrossRefGoogle Scholar
  35. European Commission, 2003a. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Working Group REFCOND. Guidance document no 10. Rivers and lakes-Typology, reference conditions and classification systems.Google Scholar
  36. European Commission, 2003b. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Working Group on IMPRESS. Guidance document no 3. Analysis of Pressures and Impacts.Google Scholar
  37. European Commission, 2005. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document No. 14. Guidance on the Intercalibration Process 2004–2006. 26 pp.Google Scholar
  38. European Commission, 2007. MedGIG Intercalibration technical report-Part 1 Rivers, Sect. 1 Benthic Invertebrates. 15 June 2007.16 pp.Google Scholar
  39. Furse, M., D. Hering, O. Moog, P. Verdonschot, R. K. Johnson, K. Brabec, K. Gritzalis, A. Buffagni, P. Pinto, N. Friberg, J. Murray-Bligh, J. Kokes, R. Alber, P. Usseglio-Polatera, P. Haase, R. Sweeting, B. Bis, K. Szoszkiewicz, H. Soszka, G. Springe, F. Sporka & I. Krno, 2006. The STAR project: context, objectives and approaches. Hydrobiologia 566: 3–29.CrossRefGoogle Scholar
  40. González del Tánago, M. & D. García de Jalón., 1984. Desarrollo de un índice biológico para estimar la calidad de las aguas de la Cuenca del Duero. Limnetica 1: 263–272.Google Scholar
  41. Heiskanen, A. S., W. Van De Bund, A. C. Cardoso & P. Noges, 2004. Towards good of ecological status of surface waters in Europe—interpretation and harmonisation of the concept. Water Science and Technology 49: 169–177.PubMedGoogle Scholar
  42. Hellawell, J. M, 1986. Biological indicators of freshwater pollution and environmental management. In Mellanby, K. (ed.), Pollution Monitoring Series. Elsevier Applied Science. London & New York: 546 pp.Google Scholar
  43. Hering, D., O. Moog, L. Sandin & P. F. M. Verdonschot, 2004. Overview and application of the AQEM assessment system. Hydrobiologia 516: 1–20.CrossRefGoogle Scholar
  44. Hering, D., C. K. Feld, O. Moog & T. Ofenböck, 2006. Cook book for the development of a multimetric index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia 566: 311–324.CrossRefGoogle Scholar
  45. Horne, J. S. & E. D. Garton, 2006. Selecting the best home range model: an information-theoretic approach. Ecology 87(5): 1146–1152.PubMedCrossRefGoogle Scholar
  46. Hughes, R. M., & T. Oberdorff, 1999. Applications of IBI concepts and metrics to waters outside the United States. In Simon., T. P. (ed.), Assessing de Sustainability and Biological Integrity of Water Resource Quality Using Fish Communities. CRC Press, Boca Raton, Florida: 79–96.Google Scholar
  47. Jáimez-Cuéllar, P., S. Vivas, N. Bonada, S. Robles, A. Mellado, M. Álvarez, J. Avilés, J. Casas, M. Ortega, I. Pardo, N. Prat, M. Rieradevall, C. E. Sáinz-Cantero, A. Sánchez-Ortega, M. L. Suárez, M. Toro, M. R. Vidal-Albarca, C. Zamora-Muñoz & J. Alba-Tercedor, 2004. Protocolo GUADALMED (PRECE). Limnetica (2002) 21(3–4): 187–204.Google Scholar
  48. Johnson, G. B. & K. Omland, 2004. Model selection in ecology and evolution. Trends in Ecology and Evolution 19(2): 101–108.PubMedCrossRefGoogle Scholar
  49. Karr, J. R. & E. W. Chu, 1999. Restoring Life in Running Waters: Better Biological Monitoring. Island Press, Washington, DC: 200.Google Scholar
  50. Klemm, D. J., K. A. Blocksom, F. A. Fulk, A. T. Herlihy, R. M. Hughes, P. R. Kaufmann, D. V. Peck, J. L. Stolddard, W. T. Thoeny, M. B. Griffith & W. S. Davis, 2003. Development and evaluation of a macroinvertebrate biotic integrity index (MBII) for regionally assessing Mid-Atlantic highlands streams. Environmental Management 31: 656–669.PubMedCrossRefGoogle Scholar
  51. Knoben, R. A. E., C. Roos & M. C. M. Van Oirschot, 1995. Biological Assessment Methods for Watercourses. UN/ECE Task Force on Monitoring & Assessment 3: 86 pp.Google Scholar
  52. Legendre, P. & L. Legendre, 1998. Numerical Ecology, 2nd ed. Elsevier Science B. V., The Netherlands: 853.Google Scholar
  53. Marchetti, M. P., P. B. Moyle & R. Levine, 2004. Alien fishes in California watersheds: characteristics of successful and failed invaders. Ecological Applications 14(2): 587–596.CrossRefGoogle Scholar
  54. McQuarrie, A. D. R. & C. L. Tsai, 1998. Regression and Time Series Model Selection. World Scientific. ISBN 981023242X. 455 pp.Google Scholar
  55. Metcalfe, J. L., 1989. Biological water quality assessment of running waters based on macroinvertebrates communities: history and present status in Europe. Environmental Pollution 60: 101–139.PubMedCrossRefGoogle Scholar
  56. Ministerio de Medio Ambiente, 2004. Manual para análisis de presiones e impactos en aguas superficiales (version 17th) November 2004.Google Scholar
  57. Ministerio de Medio Ambiente, 2005. Caracterización de los tipos de ríos y lagos. Análisis de las características de las demarcaciones. Directiva 2000/60/CE. Centro de Estudios Hidrográficos del CEDEX.Google Scholar
  58. Moog, O. & A. Chovanec, 2000. Assessing the ecological integrity of rivers: walking the line among ecological, political and administrative interest. Hydrobiological 422/423: 99–109.CrossRefGoogle Scholar
  59. Munné, A. & N. Prat, 2004. Defining river types in a Mediterranean area. A methodology for the implementation of the EU Water Framework Directive. Environmental Management 34(5): 711–729.PubMedCrossRefGoogle Scholar
  60. Munné, A., N. Prat, C. Solà, N. Bonada & M. Rieradevall, 2003. A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index. Aquatic Conservation: Marine and Freshwater Ecosystems 13: 147–163.CrossRefGoogle Scholar
  61. Oscoz, J., J. Gomà, L. Ector, J. Cambra, M. Pardos & C. Durán, 2007. Estudio comparativo del estado ecológico de los ríos de la cuenca del Ebro mediante macroinvertebrados y diatomeas. Limnetica 26(1): 143–158.Google Scholar
  62. Pinto, P., J. Rosado, M. Morais & I. Antunes, 2004. Assessment methodology for siliceous basins in Portugal. Hydrobiologia 516: 191–214.CrossRefGoogle Scholar
  63. Pollard, P. & W. van de Bund, 2005. Template for the development of a boundary setting protocol for the purposes of the intercalibration exercise. Agreed version of WG 2.A Ecological Status. Version 1.2. 6 June 2005. Ispra: 24 pp.Google Scholar
  64. Poquet, J. M., J. Alba-Tercedor, T. Puntí, M. M. Montoya-Sánchez, S. Robles, M. Álvarez, C. Zamora-Muñoz, C.E. Sainz-Cantero, M. R. Vidal-Abarca, M. L. Suárez, M. Toro, A. M. Pujante, M. Rieradevall & N. Prat, 2006. MEDPACS, a Mediterranean prediction and classification system for benthic macroinvertebrate communities and its use to assess the ecological status according to the European Water Framework Directive. Presented at the NABS Annual meeting, Anchorage, Alaska, 2006.Google Scholar
  65. Prat, N., 1991. Present trends in river studies. Oecologia aquatica 10: 1–12.Google Scholar
  66. Prat, N, 2004. El proyecto GUADALMED. Limnetica (2002) 21(3–4): 1–3.Google Scholar
  67. Prat, N., I. Muñoz, G. Gonzalez & X. Millet, 1986. Comparación crítica de dos índices de calidad de las aguas: ISQUA y BILL. Tecnología del Agua 31: 33–49.Google Scholar
  68. Puértolas, L., M. Rieradevall & N. Prat, 2007. Comparación de tres protocolos de muestreo de macroinvertebrados para determinar la calidad del agua. Tecnología del Agua 289: 42–48.Google Scholar
  69. Reynoldson, T. B., R. H. Norris, V. H. Resh, K. E. Day & D. M. Rosenberg, 1997. The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society 16: 833–852.CrossRefGoogle Scholar
  70. Rico, E., A. Rallo, M. A. Sevillano & M. L. Arretxe, 1992. Comparison of several biological indices based on river macroinvertebrate benthic community for assessment of running water quality. Annales de Limnologie 28: 147–156.CrossRefGoogle Scholar
  71. Shannon, C. E. & W. Weaver, 1949. The Mathematical Theory of Communication. The University of Illinois Press, Urbana, Illinois.Google Scholar
  72. Smith, M. J., W. R. Kay, D. H. D. Edward, P. J. Papas, K. St., J. Richardsons, J. C. Simpson, A. M. Pinder, D. J. Cale, H. J. Horwitz, J. A. Davis, F. H. Yung, R. H. Norris & S. A. Halse, 1999. AusRivAS: using macroinvertebrates to assess ecological condition of rivers in Western Australia. Freshwater Biology 41: 269–282.CrossRefGoogle Scholar
  73. Sporka, F., H. E. Vlek, E. Bulánková & I. Krno, 2006. Influence of seasonal variation on bioassessment of streams using macroinvertebrates. Hydrobiologia 566: 543–555.CrossRefGoogle Scholar
  74. Standard Methods, 1999. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Water Works Association. January 1999:1220 pp.Google Scholar
  75. Tachet, H., P. Richoux, M. Bousnaud & P. Usseglio-Polatera, 2002. Invertebrés d’eau douce: Systematique, Biologie, Ecologie. CNRS. 587 pp.Google Scholar
  76. Ter Braak, C. J. F. & P. Smilauer, 2002. Reference manual and CanocoDraw for windows user’s guide version 4.5- Biometrics – Plant Research International, Wageningen and Ceské Budejovice.Google Scholar
  77. Williams, D. D., 2006. The Biology of Temporary Waters. Oxford University Press, New York: 337.Google Scholar
  78. Wright, J. F., M. T. Furse & P. D. Armitage, 1993. RIVPACS—a technique for evaluating the biological quality of rivers in the UK. European Water Pollution Control 3(4): 15–25.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Catalan Water AgencyBarcelonaSpain
  2. 2.Department of EcologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations