Advertisement

Hydrobiologia

, Volume 628, Issue 1, pp 121–135 | Cite as

Effect of main-stem dams on zooplankton communities of the Missouri River (USA)

  • John E. Havel
  • Kim A. Medley
  • Kelli D. Dickerson
  • Theodore R. Angradi
  • David W. Bolgrien
  • Paul A. Bukaveckas
  • Terri M. Jicha
Primary research paper

Abstract

The persistence of plankton in flowing water presents an enigma, i.e., how can populations be sustained while constantly losing individuals downriver? We examined the distribution and abundance of zooplankton from 146 sites on the Missouri River (USA) and found large shifts in the dominance of major taxa between management zones of this regulated river. Crustacean zooplankton were dominant in the inter-reservoir zone of the river, and their taxonomic composition was similar to regional lakes and reservoirs. The exponential decline of cladocerans and copepods with distance from main-stem dams suggests that conditions within the river are adverse to population growth and that reservoirs are the main source of these crustaceans in the river. Rotifers dominated in the channelized zone of the river. High algal biomass and rapid population growth rates likely allow persistence of rotifers in segments of the river that do not receive direct reservoir inputs. Rotifers were less abundant in the inter-reservoir zone, suggesting that their numbers are limited by internal processes, such as food or predators. Since zooplankton are known to be an important food for larval fishes in rivers, this shift of major taxa in regulated rivers has implications for river food webs.

Keywords

Rotifers Copepods Cladocerans Reservoirs Regulated rivers 

Notes

Acknowledgments

Funding for this project was provided by the U.S. Environmental Protection Agency, through its Environmental Monitoring and Assessment Program (EMAP, http://www.epa.gov/emap/) for Great River Ecosystems. A project of this scale would not have been possible without the assistance of many individuals. We especially thank the three field crews for collecting samples and physico-chemical data from the Missouri River, and Jason Wolf and Carla Atkinson (MSU) for sampling the tributaries. We also appreciate the many insights gained from our discussions with EMAP collaborators, particularly John Chick, Anthony Aufdenkampe, Dave Walters, and the late Jeffrey Jack. The paper benefited from the careful insights of three anonymous reviewers.

References

  1. Acharya, K., J. D. Jack & P. A. Bukaveckas, 2005. Dietary effects on life history traits of riverine Bosmina. Freshwater Biology 50: 965–975. CrossRefGoogle Scholar
  2. Acharya, K., P. A. Bukaveckas, J. D. Jack, M. Kyle & J. J. Elser, 2006. Consumer growth linked to diet and RNA-P stoichiometry: response of Bosmina to variation in riverine food resources. Limnology and Oceanography 51: 1859–1869.Google Scholar
  3. Allan, J. D., 1976. Life history patterns in zooplankton. The American Naturalist 110: 165–180.CrossRefGoogle Scholar
  4. Allan, J. D. & M. M. Castillo, 2007. Stream ecology: structure and function of running waters, 2nd ed. Springer, Berlin.Google Scholar
  5. Angradi, T. R. (ed.), 2006. Environmental monitoring and assessment program, Great River ecosystems field operations manual. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC. Retrieved February 20, 2008, from www.epa.gov/emap/greatriver/.
  6. Angradi, T. R., D. W. Bolgrien, T. M. Jicha, M. S. Pearson, B. H. Hill, D. L. Taylor, E. W. Schweiger, L. Shepard, A. R. Batterman, M. F. Moffett, C. M. Elonen & L. E. Anderson, 2008. A bioassessment approach for mid-continent great rivers: the Upper Mississippi, Missouri, and Ohio (USA). Environmental Monitoring and Assessment (in press).Google Scholar
  7. APHA, 1998. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC.Google Scholar
  8. Baranyi, C., T. Hein, C. Holarek, S. Keckeis & F. Schiemer, 2002. Zooplankton biomass and community structure in a Danube river floodplain system: effects of hydrology. Freshwater Biology 47: 473–482.CrossRefGoogle Scholar
  9. Benke, A. C. & C. E. Cushing (eds), 2005. Rivers of North America. Elsevier Academic Press, Amsterdam.Google Scholar
  10. Brooks, J. L., 1959. Cladocera. In Edmondson, W. T. (ed.), Freshwater biology. Wiley, New York, NY: 587–656.Google Scholar
  11. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.PubMedCrossRefGoogle Scholar
  12. Cowell, B. C., 1967. The Copepoda and Cladocera of a Missouri River reservoir: a comparison of sampling in the reservoir and the discharge. Limnology and Oceanography 12: 125–136.Google Scholar
  13. Cowell, B. C., 1970. The influence of plankton discharges from an upstream reservoir on standing crops in a Missouri River reservoir. Limnology and Oceanography 15: 427–441.Google Scholar
  14. DeMelo, R. & P. D. N. Hebert, 1994. A taxonomic reevaluation of North American Bosminidae. Canadian Journal of Zoology 72: 1808–1825.CrossRefGoogle Scholar
  15. Dickerson, K. D., K. A. Medley & J. E. Havel, 2009. Spatial variation in zooplankton community structure is related to hydrologic flow units in the Missouri River, USA. River Research and Applications (in press).Google Scholar
  16. Edmondson, W. T. (ed.), 1959. Freshwater biology, 2nd ed. Wiley, New York.Google Scholar
  17. Ferrari, I., A. Farabegoli & R. Mazzoni, 1989. Abundance and diversity of planktonic rotifers in the Po River. Hydrobiologia 186/187: 201–208.CrossRefGoogle Scholar
  18. Galat, D. L., C. R. Berry, W. M. Gardner, J. C. Hendrickson, G. E. Mestl, G. J. Power, C. Stone & M. R. Winston, 2005a. Spatiotemporal patterns and changes in Missouri River fishes. In Rinne, J. N., R. M. Hughes & R. Calamusso (eds), Historical changes in large river fish assemblages of the Americas. American Fisheries Society Symposium, Vol. 45, Bethesda, MD: 249–291.Google Scholar
  19. Galat, D. L., C. R. Berry, E. J. Peters & R. G. White, 2005. Missouri River basin. In Benke, A. C. & C. E. Cushing (eds), Rivers of North America. Elsevier Academic Press, Amsterdam.Google Scholar
  20. Guelda, D. L., R. W. Koch, J. D. Jack & P. A. Bukaveckas, 2005. Experimental evidence for density-dependent effects and the importance of algal production in determining population growth rates of riverine zooplankton. River Research and Applications 21: 595–608.CrossRefGoogle Scholar
  21. Havel, J. E. & K. R. Pattinson, 2004. Spatial distribution and seasonal dynamics of plankton in a terminal multiple-series reservoir. Lake and Reservoir Management 20: 14–26.CrossRefGoogle Scholar
  22. Havel, J. E., J. B. Shurin & J. R. Jones, 2005. Environmental limits to a rapidly spreading exotic cladoceran. EcoScience 12: 376–385.CrossRefGoogle Scholar
  23. Hynes, H. B. N., 1970. The ecology of running waters. University of Toronto Press, Toronto.Google Scholar
  24. Jack, J. D. & J. H. Thorp, 2002. Impacts of fish predation on an Ohio River zooplankton community. Journal of Plankton Research 24: 119–127.CrossRefGoogle Scholar
  25. Jennings, D. K., 1979. An evaluation of aquatic habitat associated with notched dikes on the Missouri River, Missouri. University of Missouri-Columbia, Columbia.Google Scholar
  26. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. In Dodge, D. P. (ed.), Proceedings of the International Large River Symposium, Vol. 106. Canadian Special Publication of Fisheries and Aquatic Sciences: 110–127.Google Scholar
  27. King, A. J., 2004. Density and distribution of potential prey for larval fish in the main channel of a floodplain river: pelagic versus epibenthic meiofauna. River Research and Applications 20: 883–897.CrossRefGoogle Scholar
  28. Kirk, K. L. & J. J. Gilbert, 1990. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71: 1741–1755.CrossRefGoogle Scholar
  29. Kofoid, C. A., 1903. The plankton of the Illinois River, 1894–1896, with introductory notes upon the hydrography of the Illinois River and its basin. Quantitative investigations and general results. Illinois State Laboratory of Natural History Bulletin 6: 95–629.Google Scholar
  30. Lair, N., 2006. A review of regulation mechanisms of metazoan plankton in riverine ecosystems: aquatic habitat versus biota. River Research and Applications 22: 567–593.CrossRefGoogle Scholar
  31. Levchuk, A. P., 2007. Zooplankton of the Upper Mississippi River: patterns of community structure and sampling methodology. Master of Science, University of Illinois, Urbana-Champaign.Google Scholar
  32. Marzolf, G. R., 1990. Reservoirs as environments for zooplankton. In Thornton, K. W., B. L. Kimmel & F. E. Payne (eds), Reservoir limnology: ecological perspectives. Wiley, New York: 195–207.Google Scholar
  33. Pace, M. L., S. E. G. Findlay & D. Lints, 1992. Zooplankton in advective environments: the Hudson River community and a comparative analysis. Canadian Journal of Fisheries and Aquatic Sciences 49: 1060–1069.CrossRefGoogle Scholar
  34. Repsys, A. J. & G. D. Rogers, 1982. Zooplankton studies in the channelized Missouri River. In Larry Hesse, G. H., H. Lewis, S. Reetz & A. Schlesinger (eds), The middle Missouri River. The Missouri River Study Group, Norfolk, NE: 125–145.Google Scholar
  35. Saunders, J. F. I. & W. M. J. Lewis, 1988. Zooplankton abundance and transport in a tropical white-water river. Hydrobiologia 162: 147–155.CrossRefGoogle Scholar
  36. Saunders, J. F. III & W. M. J. Lewis, 1989. Zooplankton abundance in the lower Orinoco River, Venezuela. Limnology and Oceanography 34: 397–409.CrossRefGoogle Scholar
  37. Sellers, T. & P. A. Bukaveckas, 2003. Phytoplankton production in a large regulated river: a modeling and mass balance assessment. Limnology and Oceanography 48: 1476–1487.Google Scholar
  38. Shiel, R. J., J. F. Costelloe, J. R. W. Reid, P. Hudson & J. Powling, 2006. Zooplankton diversity and assemblages in arid zone rivers of the Lake Eyre Basin, Australia. Marina and Freshwater Research 57: 49–60.CrossRefGoogle Scholar
  39. Sluss, T. D., G. A. Cobbs & J. H. Thorp, 2008. Impact of turbulence on riverine zooplankton: a mesocosm experiment. Freshwater Biology 53: 1999–2010.CrossRefGoogle Scholar
  40. Smirnov, N. & Timms, B. 1983. A revision of the Australian Cladocera (Crustacea). Records of the Australian Museum 1: 1–132.Google Scholar
  41. Soeken, L. A., 1998. The effect of turbidity on the distribution and life history of river zooplankton. Master’s Thesis, Southwest Missouri State University, Springfield, Missouri, USA.Google Scholar
  42. Sparks, R. E., J. C. Nelson & Y. Yin, 1998. Naturalization of the flood regime in regulated rivers. Bioscience 48: 706–720.CrossRefGoogle Scholar
  43. Thorp, J. H. & S. Mantovani, 2005. Zooplankton of turbid and hydrologically dynamic prairie rivers. Freshwater Biology 50: 1474–1491.CrossRefGoogle Scholar
  44. Thorp, J. H., A. R. Black, K. H. Haag & J. D. Wehr, 1994. Zooplankton assemblages in the Ohio River: seasonal, tributary, and navigation dam effects. Canadian Journal of Fisheries and Aquatic Sciences 51: 1634–1643.CrossRefGoogle Scholar
  45. Van den Brink, F. W. B., M. M. Van Katwijk & G. Van der Velde, 1994. Impact of hydrology on phyto- and zooplankton community composition in floodplain lakes along the Lower Rhine and Meuse. Journal of Plankton Research 16: 351–373.CrossRefGoogle Scholar
  46. Wallace, R. L. & T. W. Snell, 2001. Rotifera. In Thorp, J. H. & A. P. Covich (eds), Ecology and classification of North American freshwater invertebrates. Academic Press, San Diego: 195–254.CrossRefGoogle Scholar
  47. Ward, J. V., 1975. Downstream fate of zooplankton from a hypolimnial release mountain reservoir. Internationale Vereinigung fur theoretische und angewandte Limnologie 19: 1798–1804.Google Scholar
  48. Wetzel, R. G., 2001. Limnology: lake and river ecosystems, 3rd ed. Academic Press, San Diego, California.Google Scholar
  49. Williamson, C. & J. W. Reed, 2001. Copepoda. In Thorp, J. H. & A. P. Covich (eds), Ecology and classification of North American freshwater invertebrates. Academic Press, Inc, San Diego: 915–954.CrossRefGoogle Scholar
  50. Wilson, M. S. & H. C. Yeatman, 1959. Free-living copepoda. In Edmondson, W. T. (ed.), Freshwater biology. Wiley, New York, NY: 735–861.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • John E. Havel
    • 1
  • Kim A. Medley
    • 1
    • 4
  • Kelli D. Dickerson
    • 1
  • Theodore R. Angradi
    • 2
  • David W. Bolgrien
    • 2
  • Paul A. Bukaveckas
    • 3
  • Terri M. Jicha
    • 2
  1. 1.Department of BiologyMissouri State UniversitySpringfieldUSA
  2. 2.Mid-Continent Ecology Division, National Health and Environmental Effects Research LaboratoryUnited States Environmental Protection Agency, Office of Research and DevelopmentDuluthUSA
  3. 3.Department of BiologyVirginia Commonwealth UniversityRichmondUSA
  4. 4.Department of BiologyUniversity of Central FloridaOrlandoUSA

Personalised recommendations