, Volume 626, Issue 1, pp 27–40 | Cite as

Seasonal dynamics of zooplankton in a shallow eutrophic, man-made hyposaline lake in Delhi (India): role of environmental factors

  • Jyoti AroraEmail author
  • N. K. Mehra


Old Fort Lake, a small (1.6 ha), shallow, and recreational water body in Delhi (India) was studied through monthly surveys in two consecutive years (January, 2000–December, 2001). Precipitation is the major source of water for this closed basin lake. In addition, ground water is used for replenishing the lake regularly. This alkaline, hyposaline hard water lake contains very high ionic concentration, especially of nitrates. Based on overall ionic composition, this lake can be categorized as chloride–sulfate alkaline waters with the anion sequence dominated by SO4 2− > Cl > HCO3 , and the cations by Mg++ > Ca++. The overall seasonal variability in physicochemical profile was largely regulated by the annual cycle of evaporation and precipitation, whereas the ground water largely influences its water quality. The lake exhibited phytoplankton-dominated turbid state due to dominance of the blue green alga, Microcystis aeruginosa. The persistent cyanobacterial blooms and the elevated nutrient levels are indicative of the cultural eutrophication of the lake. This study focuses on the relative importance of eutrophic vis-à-vis hyposaline conditions in determining the structure and seasonal dynamics of zooplankton species assemblages. A total of 52 zooplankton species were recorded and rotifers dominated the community structure qualitatively as well as quantitatively. The genus Brachionus comprised a significant component of zooplankton community with B. plicatilis as the most dominant species. The other common taxa were B. quadridentatus, B. angularis, Lecane grandis, L. thalera, L. punctata, Mesocyclops sp., and Alona rectangula. Multivariate data analysis techniques, Canonical Correspondence Analysis (CCA) along with Monte Carlo Permutation Tests were used to determine the minimum number of environmental factors that could explain statistically significant (P < 0.05) proportions of variation in the species data. The significant variables selected by CCA were NH3–N followed by percent saturation of DO, COD, SS, BOD, NO2–N, rainfall, silicates, and PO4–P. The results indicate that the seasonal succession patterns of the zooplankton species were largely controlled by physicochemical factors related directly or indirectly to the process of eutrophication, whereas hyposaline conditions in the lake determined the characteristic species composition.


Zooplankton Seasonal dynamics Hyposaline Shallow lake Eutrophication 



We are extremely grateful to Dr. Nico Salmaso (University of Padova, Italy) for his help and valuable comments on the statistical analysis of data, especially regarding multivariate data analysis techniques. We are thankful to the Head, Department of Zoology for providing the necessary research facilities. J. A. is thankful to CSIR and INSA for providing the financial assistance to travel. Finally, but not the least, thanks are due to the organizers of the 9th ISSLR conference for providing excellent hospitality and waiver of registration fee.


  1. Allen, A. P., T. R. Whittier, D. P. Larsen, P. R. Kaufmann, R. J. O’ Connor, R. M. Hughes, R. S. Stemberger, S. S. Dixit, R. O. Brinkhurst, A. T. Herlihy & S. G. Paulsen, 1999. Concordance of taxonomic composition patterns across multiple assemblages: effects of scale, size and land use. Canadian Journal of Fisheries and Aquatic Sciences 56: 2029–2040.CrossRefGoogle Scholar
  2. APHA, 1989. Standard Methods for the Examination of Water and Wastewater, 17th ed. American Public Health Association, Washington DC.Google Scholar
  3. Armengol, J., J. L. Riera & J. A. Morgui, 1991. Major ionic composition in the Spanish reservoirs. Verhandlungen der Internationalen Vereinigung für Limnologie 24: 1363–1366.Google Scholar
  4. Arora, J., 2003. Limnological studies on two shallow, eutrophic, man-made lakes in Delhi. Ph.D. thesis. University of Delhi, Delhi.Google Scholar
  5. Beaver, J. R., A. M. Miller-Leneke & J. K. Actun, 1999. Midsummer zooplankton assemblages in four types of wetlands in the upper Midwest. U.S.A. Hydrobiologia 380: 209–220.CrossRefGoogle Scholar
  6. Berka, C., H. Schreier & K. Hall, 2001. Linking water quality with agricultural intensification in a rural water shed. Water Air and Soil Pollution 127: 389–401.CrossRefGoogle Scholar
  7. Berzins, B. & B. Pejler, 1989. Rotifer occurrence in relation to temperature. Hydrobiologia 175: 223–231.CrossRefGoogle Scholar
  8. Bos, D. G., B. F. Cumming & J. P. Smol, 1999. Cladocera and Anostraca from the interior plateau of British Columbia, Canada, as paleolimnological indicators of salinity and lake level. Hydrobiologia 392: 129–141.CrossRefGoogle Scholar
  9. Branco, C. W. C., F. A. Esteves & B. Kozlowsky-Suzuki, 2000. The zooplankton and other limnological features of a humic coastal lagoon (lagoa Comprida, Macé, R. J.) in Brazil. Hydrobiologia 437: 71–81.CrossRefGoogle Scholar
  10. Brandl, Z., B. Desortova, J. Hrbacel, V. Vyhnalek, J. Seda & M. Straskraba, 1989. Seasonal changes in zooplankton and phytoplankton and their mutual relations in some Czechoslovak reservoirs. Archiv für Hydrobiologie 33: 597–604.Google Scholar
  11. Brower, J. E., J. H. Zan & C. N. von Ende, 1990. Species diversity. In William, C. (ed.), In Field and Laboratory Field Methods for General Ecology, 3rd. Brown Publishers, Dubuque IA: 153–175.Google Scholar
  12. Burgis, M. J., 1973. Observation on the Cladocera of the Lake George, Uganda. Journal of Zoology, London 170: 339–349.Google Scholar
  13. Carmichael, W. W., 1996. Toxic Microcystis and the environment. In Watanabe, M. F., K. Harada, W. W. Carmichael & H. Fujiki (eds), Toxic Microcystis. CRC Press, Boca Raton: 1–11.Google Scholar
  14. Carney, H. J., 1998. Food web approaches in biodiversity studies and conservation. Verhandlungen der Internationalen Vereinigung für Limnologie 26: 2409–2412.Google Scholar
  15. Codd, G. A., 2000. Cyanobacterial toxins, the perception of water quality, and the priorisation of eutrophication control. Ecological Engineering 16: 51–60.CrossRefGoogle Scholar
  16. Colburn, E. A., 1988. Factors influencing species diversity in saline waters of Death Valley, USA. Hydrobiologia 158: 215–226.CrossRefGoogle Scholar
  17. de Mott, W. R., Q. Z. Zhang & W. W. Carmichael, 1991. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnology and Oceanography 36: 1346–1357.Google Scholar
  18. Dodson, S. I., 1992. Predicting crustacean zooplankton species richness. Limnology and Oceanography 37: 848–856.CrossRefGoogle Scholar
  19. Drever, J. I., 1996. The Geochemistry of Natural Waters, 3rd ed. Prentice Hall, New Jersey.Google Scholar
  20. Dumont, H. J., 1977. Biotic factors in the population dynamics of rotifers. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 8: 98–122.Google Scholar
  21. Dumont, H. J., 1994. On the diversity of the Cladocera in the tropics. Hydrobiologia 272: 27–38.CrossRefGoogle Scholar
  22. Egborge, A. B. M., 1994. Salinity and the distribution of rotifers in the Lagos Harbour–Badagry Creek system, Nigeria. Hydrobiologia 272: 95–104.CrossRefGoogle Scholar
  23. Fernando, C. H., 1994. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia 272: 105–123.CrossRefGoogle Scholar
  24. Fresenius, W., K. E. Quenten & W. Schneider (eds), 1988. Water Analysis. A Practical Guide to Physico-chemical, Chemical and Microbiological Water Examination and Quality Assurance. Springer Verlag, Berlin.Google Scholar
  25. Furch, K., 2000. Evaluation of groundwater input as major source of solutes in an Amazonian floodplain lake during the low water period. Verhandlungen der Internationalen Vereinigung für Limnologie 27: 412–415.Google Scholar
  26. Gaviria, S., 1993. Crustacean plankton of a high altitude tropical lake: Laguna de Chingaza, Columbia. Verhandlungen der Internationalen Vereinigung für Limnologie 25: 906–911.Google Scholar
  27. Gilbert, J. J. & K. G. Bogdan, 1984. Rotifer grazing: in situ studies on selectivity and rates. In Meyer, D. G. & J. R. Strickler (eds), Trophic Interactions within Aquatic Ecosystems, Vol. 85. American Association for the Advancement of Science Selected Symposium, Boulder, Colorado: 97–133.Google Scholar
  28. Gopal, B. & D. P. Zutshi, 1998. Fifty years of hydrobiological research in India. Hydrobiologia 384: 267–290.CrossRefGoogle Scholar
  29. Green, J. & S. Mengistou, 1991. Specific diversity and community structure of Rotifera in a salinity series of Ethiopian inland water bodies. Hydrobiologia 209: 95–106.Google Scholar
  30. Green, J., A. I. el Moghraby & O. M. M. Ali, 1979. Biological observations on the crater lakes of Jebel Marra, Sudan. Journal of Zoology, London 189: 493–502.Google Scholar
  31. Hammer, U. T., 1986. Saline Lake Ecosystems of the World. Dordrecht. Dr. W. Junk Publishers, Boston.Google Scholar
  32. Henning, M., H. Hertel, H. Wall & J. G. Kohl, 1991. Strain-specific influence of Microcystis aeruginosa on food ingestion and assimilation of some cladocerans and copepods. Internationale Revue der gesamten Hydrobiologie 76: 37–45.CrossRefGoogle Scholar
  33. Herbst, D. B., 2001. Gradients of salinity stress, environmental stability and water chemistry as a template for defining habitats types and physiological strategies in inland salt waters. Hydrobiologia 466: 209–219.CrossRefGoogle Scholar
  34. Hutchinson, G. E., 1957. A Treatise on Limnology. I. Geography, Physics and Chemistry. Wiley, New York.Google Scholar
  35. Hutchinson, G. E., 1967. A Treatise on Limnology. II. Introduction to Lake Biology and the Limnoplankton. Wiley, New York.Google Scholar
  36. Jana, B. B., 1998. State-of-the-art of lakes in India: an overview. Archiv für Hydrobiologie – Supplementbände (Monographic Studies) 121: 1–89.Google Scholar
  37. Jeppesen, E., M. Søndergaard, E. Kanstrup & B. Petersen, 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia 276: 15–30.CrossRefGoogle Scholar
  38. Kaçaroğlu, F., M. Değirmenci & O. Cerit, 2001. Water quality problems of gypsiferous water shed: upper Kizilirmak basin, Sivas, Turkey. Water Air and Soil Pollution 128: 161–180.CrossRefGoogle Scholar
  39. Kasprzak, P. & R. Koschel, 2000. Lake trophic state, community structure and biomass of crustacean plankton. Verhandlungen der Internationalen Vereinigung für Limnologie 27: 773–777.Google Scholar
  40. Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas. Ein bestimmungswerks begundet von Max Voigt. Uberordunung. Monogononta. Gebrüder, Borntrager, Berlin, Stuttgart, Vol. I. Text: 673 pp., Vol. II. Tafelband: 234 pls.Google Scholar
  41. La Baugh, J. W., T. C. Winter & D. O. Rosenberry, 2000. Composition of the variability in fluxes of ground water and solutes in lakes and wetlands in central North America. Verhandlungen der Internationalen Vereinigung für Limnologie 27: 420–426.Google Scholar
  42. Leland, H. V. & W. R. Berkas, 1998. Temporal variation in plankton assemblages and physicochemistry of Devils Lake, North Dakota. Hydrobiologia 377: 57–71.CrossRefGoogle Scholar
  43. Lewis Jr., W. M., 1987. Tropical limnology. Annual Review of Ecology and Systematics 18: 159–184.CrossRefGoogle Scholar
  44. Magnuson, J. J. & T. K. Kratz, 2000. Lakes in the landscape: approaches to regional limnology. Verhandlungen der Internationalen Vereinigung für Limnologie 27: 74–87.Google Scholar
  45. Maia-Barbosa, P. M., R. M. Menendez & F. A. R. Barbosa, 1998. Zooplankton composition of five lakes of the Lagoa Santa Karstic plateau. Verhandlungen der Internationalen Vereinigung für Limnologie 26: 1963–1967.Google Scholar
  46. Maier, G., 1996. Copepod communities in lakes of varying trophic degree. Archiv für Hydrobiologie 136: 455–465.Google Scholar
  47. McCauley, E. & J. Kalff, 1981. Empirical relationships between phytoplankton and zooplankton biomass in lakes. Canadian Journal of Fisheries and Aquatic Sciences 38: 458–463.CrossRefGoogle Scholar
  48. Michael, R. G. & B. K. Sharma, 1988. Indian Cladocera (Crustacea: Brachiopoda: Cladocera), Fauna of India and Adjacent Countries Series. Zoological Survey of India, Calcutta, 262 pp.Google Scholar
  49. Michaloudi, E., M. Zarfdjian & P. S. Economidis, 1997. The zooplankton of Lake Mikri Prespa. Hydrobiologia 351: 77–94.CrossRefGoogle Scholar
  50. Moss, B., 1994. Brackish and freshwater shallow lakes—different systems or variations on the same theme. Hydrobiologia 276: 1–4.CrossRefGoogle Scholar
  51. Narula, K. K., N. K. Bansal, A. K. Gosain & F. Wendland, 2002. GIS based identification of risk to nutrient exposure in the large agricultural lands of India—towards better decision-making. Journal of Geographic Information and Decision Analysis 6: 82–94.Google Scholar
  52. Naselli-Flores, L., 1999. Limnological aspects of Sicilian reservoirs: a comparative ecosystemic approach. In Tundisi, J. G. & M. Straskraba (eds), Theoretical Reservoir Ecology and its Application. International Institute of Ecology, Brazilian Academy of Sciences and Backhuys Publishers: 283–311.Google Scholar
  53. Naselli-Flores, L., R. Barone & M. Zunio, 1998. Distribution patterns of freshwater zooplankton in Sicily (Italy). Verhandlungen der Internationalen Vereinigung für Limnologie 26: 1973–1980.Google Scholar
  54. Padisák, J., 1991. Relative frequency, seasonal pattern and possible role of species rare in phytoplankton in a large shallow lake (Lake Balaton, Hungary). Verhandlungen der Internationalen Vereinigung für Limnologie 24: 989–992.Google Scholar
  55. Pejler, B., 1995. Relation to habitat in rotifers. Hydrobiologia 313(314): 267–278.CrossRefGoogle Scholar
  56. Piirsoo, K., 2001. Phytoplankton of Estonian rivers in midsummer. Hydrobiologia 444: 135–146.CrossRefGoogle Scholar
  57. Pinel-Alloul, B., G. Methot, G. Verreault & Y. Vigneault, 1990. Zooplankton species associations in Quebec lakes: variation with abiotic factors, including natural and anthropogenic acidification. Canadian Journal of Fisheries and Aquatic Sciences 47: 110–121.CrossRefGoogle Scholar
  58. Pinel-Alloul, B., T. Niyonsenga & P. Legendre, 1995. Spatial and environmental components of freshwater zooplankton structure. Ecoscience 2: 1–19.Google Scholar
  59. Pouriot, R., 1977. Food and feeding habits of rotifers. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 8: 243–260.Google Scholar
  60. Richardson, J. L., 1969. Former lake-level fluctuations - Their recognition and interpretation. Mitteilungen der Internationale Vereinigung für theoretische und angewandte Limnologie 17: 78–93.Google Scholar
  61. Salmaso, N., 2001. SIMDISS. Computer program – Computation of resemblance matrices and diversity indices. User’s Manual, V. 2.0e.
  62. Scheffer, M., 1999. The effect of aquatic vegetation on turbidity; how important are the filter-feeders? Hydrobiologia 408(409): 307–316.CrossRefGoogle Scholar
  63. Segers, H., 1995. Rotifera 2: the Lecanidae (Monogononta). In Dumont, H. J. & T. Nogrady (eds), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 6. SPB Academic Publishing, The Hague, The Netherlands.Google Scholar
  64. Shaw, M. A. & J. R. M. Kelso, 1992. Environmental factors influencing zooplankton species composition of lakes in north central Ontario, Canada. Hydrobiologia 241: 141–154.Google Scholar
  65. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in freshwaters. Archiv für Hydrobiologie 106: 433–471.Google Scholar
  66. Starkweather, P. L., 1980. Aspects of feeding behaviour and trophic ecology of suspension feeding. Hydrobiologia 73: 63–72.CrossRefGoogle Scholar
  67. Stemberger, R. S., 1974. Spatial and temporal distribution of rotifers in Milwaukee Harbor and adjacent Lake Michigan. Proceedings of 17th Conference of Great Lakes Research, International Association of Great Lakes Research: 120–134.Google Scholar
  68. Street-Perrot, A. F. & S. P. Harrison, 1984. Temporal variations in lake levels since 30,000 yr B.P.—and index of the global hydrological cycle. Climate Processes and Climate Sensitivity 55: 118–129.Google Scholar
  69. Swadling, K. M., R. Pienitz & T. Nogrady, 2000. Zooplankton community composition of lakes in the Yukon and Northwest Territories (Canada): relationship to physical and chemical limnology. Hydrobiologia 431: 211–224.CrossRefGoogle Scholar
  70. Tallberg, P., J. Horppila, A. Vaisanen & L. Nurminen, 1999. Seasonal succession of phytoplankton and zooplankton along a trophic gradient in a eutrophic lake—implications for food web management. Hydrobiologia 412: 81–94.CrossRefGoogle Scholar
  71. ter Braak, C. J. F., 2002. CANOCO ver. 4.5 – A FORTRAN Program for Canonical Community Ordination. Microcomputer Power, Ithaca, New York.Google Scholar
  72. ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57: 255–289.CrossRefGoogle Scholar
  73. Waite, S., 2000. Ordination: patterns and gradients among samples. In Waite, S. (ed.), Statistical Ecology in Practice: A Guide to Analysing Environmental and Ecological Field Data. Pearson Education Limited, England: 268–302.Google Scholar
  74. Walker, K. F., 1981. A synopsis of ecological information on the saline lake rotifer Brachionus plicatilis Müller, 1787. Hydrobiologia 81: 159–167.CrossRefGoogle Scholar
  75. Walz, N., H. Elster & M. Mezger, 1987. The development of the rotifer community structure in Lake Constance during its eutrophication. Archiv für Hydrobiologie 4: 452–487.Google Scholar
  76. Wetzel, R. G., 1999. Plants and water in and adjacent to lakes. In Baird, A. J. & R. L. Wilby (eds), Eco-hydrology: Plants and Water in Terrestrial and Aquatic Environments. Routledge, London: 269–299.Google Scholar
  77. Wetzel, R. G., 2001. Limnology Lake and River Ecosystems, 3rd ed. Academic Press, London.Google Scholar
  78. Williams, W. D., 1978. Limnology of Victorian salt lakes. Verhandlungen der Internationalen Vereinigung für Limnologie 20: 1165–1174.Google Scholar
  79. Williams, W. D., 1998. Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 381: 191–201.CrossRefGoogle Scholar
  80. Williams, W. D., A. J. Boulton & R. G. Taaffe, 1990. Salinity as a determinant of salt lake fauna: a question of scale. Hydrobiologia 197: 257–266.CrossRefGoogle Scholar
  81. Wolfinbarger, W. C., 1999. Influences of biotic and abiotic factors on seasonal succession of zooplankton in Hugo Reservoir, Oklahoma. U.S.A. Hydrobiologia 400: 13–31.CrossRefGoogle Scholar
  82. Wood, R. B. & J. F. Talling, 1988. Chemical and algal relationships in a salinity series of Ethiopian inland waters. Hydrobiologia 158: 29–67.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Zoology, Miranda HouseUniversity of DelhiDelhiIndia
  2. 2.Limnology Unit, Department of ZoologyUniversity of DelhiDelhiIndia

Personalised recommendations