, Volume 626, Issue 1, pp 15–26 | Cite as

Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel)

  • Aharon Oren
  • Ketil B. Sørensen
  • Don E. Canfield
  • Andreas P. Teske
  • Danny Ionescu
  • André Lipski
  • Karlheinz Altendorf


Gypsum crusts containing multicolored, stratified microbial communities develop in the evaporation ponds of a commercial saltern in Eilat, Israel at salt concentrations between 190 and 240 g l−1. The upper 0.5–2 cm of the crust is densely populated by orange-brown unicellular cyanobacteria. Below, a layer of green-colored filamentous cyanobacteria is found. Underneath, a bright purple layer of anoxygenic phototrophs is present, below which a reduced black layer is found. We have investigated the biological properties of this crust using a wide variety of techniques, and we here review the results of these interdisciplinary studies. The tests performed included microscopic examination of the biota, phylogenetic analyses based on 16S rRNA gene clone libraries and denaturing gradient gel electrophoresis, fatty acid analysis, light intensity and light quality measurements, microelectrode studies of oxygen profiles and oxygen evolution, determination of sulfate reduction using radioisotope methods, and measurement of methane evolution. The stable vertical stratification in the system enabled separate analyses of the different layers with a high spatial resolution. It was therefore possible to combine the different approaches and obtain information on the activities of the different types of oxygenic and anoxygenic phototrophs, dissimilatory sulfate reducers and methanogens in the different layers, as well as phylogenetic information on the nature of the microorganisms responsible for these processes. The gypsum crust thus becomes a paradigm for the study of a wide variety of microbial processes and their interrelationships in the presence of high salt concentrations.


Hypersaline Salterns Gypsum Halophilic 16S rRNA gene sequences 



We thank the Israel Salt Company in Eilat, Israel for allowing access to the salterns, and the staff of the Interuniversity Institute for Marine Sciences of Eilat and the Moshe Shilo Minerva Center for Marine Biogeochemistry for logistic support. Different aspects of this research project were financially supported by the Danish Basic Research Foundation (Grundforskningsfonden), the Danish Research Agency (Statens Naturvidenskablige Forskningsråd), the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities, the NASA Astrobiology Institutes “Subsurface Biospheres” and “Environmental Genomics”, and the State of Lower-Saxony and the Volkswagen Foundation, Hannover, Germany.


  1. Airs, R. L. & B. J. Keely, 2003. A high resolution study of the chlorophyll and bacteriochlorophyll pigment distributions in a calcite/gypsum microbial mat. Organic Geochemistry 34: 539–551.CrossRefGoogle Scholar
  2. Antón, J., A. Oren, S. Benlloch, F. Rodríguez-Valera, R. Amann & R. Rosselló-Mora, 2002. Salinibacter ruber gen. nov., sp. nov., a novel extremely halophilic member of the Bacteria from saltern crystallizer ponds. International Journal of Systematic and Evolutionary Microbiology 52: 485–491.PubMedGoogle Scholar
  3. Bolhuis, H., E. M. te Poele & F. Rodríguez-Valera, 2004. Isolation and cultivation of Walsby’s square archaeon. Environmental Microbiology 6: 1287–1291.PubMedCrossRefGoogle Scholar
  4. Boone, D. R., 2001. Genus IV: Methanohalophilus. In Boone, D. R. & R. W. Castenholz (eds), Bergey’s Manual of Systematic Bacteriology, 2nd Edition. Volume 1. The Archaea and the Deeply Branching and Phototrophic Bacteria. Springer, New York: 281–283.Google Scholar
  5. Brandt, K. K. & K. Ingvorsen, 1997. Desulfobacter halotolerans sp. nov., a halotolerant acetate-oxidizing sulfate-reducing bacterium isolated from sediments of Great Salt Lake, Utah. Systematic and Applied Microbiology 20: 366–373.Google Scholar
  6. Brandt, K. K., F. Vester, A. N. Jensen & K. Ingvorsen, 2001. Sulfate reduction dynamics and enumeration of sulfate-reducing bacteria in hypersaline sediments of the Great Salt Lake. Microbial Ecology 41: 1–11.PubMedGoogle Scholar
  7. Burns, D. G., H. M. Camakaris, P. H. Janssen & M. L. Dyall-Smith, 2004. Cultivation of Walsby’s square haloarchaeon. FEMS Microbiology Letters 238: 469–473.PubMedGoogle Scholar
  8. Burns, D. G., P. H. Janssen, T. Itoh, M. Kamekura, Z. Li, G. Jensen, F. Rodríguez-Valera, H. Bolhuis & M. L. Dyall-Smith, 2007. Haloquadratum walsbyi gen nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. International Journal of Systematic and Evolutionary Microbiology 57: 387–392.PubMedCrossRefGoogle Scholar
  9. Canfield, D. E., K. B. Sørensen & A. Oren, 2004. Biogeochemistry of a gypsum-encrusted microbial ecosystem. Geobiology 2: 133–150.CrossRefGoogle Scholar
  10. Caumette, P., 1993. Ecology and physiology of phototrophic bacteria and sulfate-reducing bacteria in marine salterns. Experientia 49: 473–486.CrossRefGoogle Scholar
  11. Caumette, P., R. Baulaigue & R. Matheron, 1988. Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean salterns. Systematic and Applied Microbiology 10: 284–292.Google Scholar
  12. Caumette, P., R. Matheron, N. Raymond & J.-C. Relexans, 1994. Microbial mats in the hypersaline ponds of Mediterranean salterns (Salins-de-Giraud, France). FEMS Microbiology Ecology 13: 273–286.CrossRefGoogle Scholar
  13. Cohen, Y., E. Padan & M. Shilo, 1975. Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Journal of Bacteriology 123: 855–861.PubMedGoogle Scholar
  14. Conrad, R., P. Frenzel & Y. Cohen, 1995. Methane emission from hypersaline microbial mats: lack of aerobic methane oxidation activity. FEMS Microbiology Ecology 16: 297–306.CrossRefGoogle Scholar
  15. Cornée, A., 1984. Étude préliminaire des bactéries des saumures et des sédiments des salins de Santa Pola (Espagne). Comparison avec les marais salants de Salin-de-Giraud (Sud de la France). Revista d’Investigacions Geologiques 38/39: 109–122.Google Scholar
  16. Elevi Bardavid, R., D. Ionescu, A. Oren, F. A. Rainey, B. J. Hollen, D. R. Bagaley, A. M. Small & C. M. McKay, 2007. Selective enrichment, isolation and molecular detection of Salinibacter and related extremely halophilic Bacteria from hypersaline environments. Hydrobiologia 576: 3–13.CrossRefGoogle Scholar
  17. Fossing, H. & B. B. Jørgensen, 1989. Measurement of bacterial sulfate reduction in sediments. Evaluation of a single-step chromium reduction method. Biogeochemistry 8: 205–222.CrossRefGoogle Scholar
  18. Garcia-Pichel, F., U. Nübel & G. Muyzer, 1998. The phylogeny of unicellular, extremely halotolerant cyanobacteria. Archives of Microbiology 169: 469–482.PubMedCrossRefGoogle Scholar
  19. Grimalt, J. O., R. de Wit, P. Teixidor & J. Albaiges, 1992. Lipid biogeochemistry of Phormidium and Microcoleus mats. Organic Geochemistry 19: 509–530.CrossRefGoogle Scholar
  20. Ionescu, D., A. Lipski, K. Altendorf & A. Oren, 2007. Characterization of the endoevaporitic microbial communities in a hypersaline gypsum crust by fatty acid analysis. Hydrobiologia 576: 15–26.CrossRefGoogle Scholar
  21. Jahnke, L. L., B. Lee, M. J. Sweeney & H. P. Klein, 1989. Anaerobic biosynthesis of unsaturated fatty acids in the cyanobacterium, Oscillatoria limnetica. Archives of Microbiology 152: 215–217.PubMedCrossRefGoogle Scholar
  22. Javor, B., 1989. Hypersaline Environments. Microbiology and Biogeochemistry. Springer-Verlag, Berlin.Google Scholar
  23. Jonkers, H. M., R. Ludwig, R. de Wit, O. Pringault, G. Muyzer, H. Niemann, N. Finke & D. de Beer, 2003. Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: ‘La Salada de Chiprana’ (NE Spain). FEMS Microbiology Ecology 44: 175–189.CrossRefPubMedGoogle Scholar
  24. Kedar, L., Y. Kashman & A. Oren, 2002. Mycosporine-2-glycine is the major mycosporine-like amino acid in a unicellular cyanobacterium (Euhalothece sp.) isolated from a gypsum crust in a hypersaline saltern pond. FEMS Microbiology Letters 208: 233–237.PubMedCrossRefGoogle Scholar
  25. Klappenbach, J. A. & B. K. Pierson, 2004. Phylogenetic and physiological characterization of a filamentous anoxygenic photoautotrophic bacterium ‘Candidatus Chlorothrix halophila’ gen. nov., sp. nov., recovered from hypersaline microbial mats. Archives of Microbiology 181: 17–25.PubMedCrossRefGoogle Scholar
  26. Lassen, C., H. Plough & B. B. Jørgensen, 1992. A fibre-optic scalar irradiance microsensor: application for spectral light measurements in sediments. FEMS Microbiology Ecology 86: 247–254.CrossRefGoogle Scholar
  27. Margheri, M. C., M. R. Tredici, L. Barsanti & W. Balloni, 1987. The photosynthetic community of the Trapani saline lagoons: an alternative option for the exploitation of an extreme environment. Annali di Microbiologia ed Enzimologia 37: 203–215.Google Scholar
  28. Mouné, S., P. Caumette, R. Matheron & J. Willison, 2003. Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiology Ecology 44: 117–130.CrossRefPubMedGoogle Scholar
  29. Nübel, U., F. Garcia-Pichel & G. Muyzer, 2000a. The halotolerance and phylogeny of cyanobacteria with tightly coiled trichomes (Spirulina Turpin) and the description of Halospirulina tapeticola gen. nov., sp. nov. International Journal of Systematic and Evolutionary Microbiology 50: 1265–1277.PubMedGoogle Scholar
  30. Nübel, U., F. Garcia-Pichel, E. Clavero & G. Muyzer, 2000b. Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environmental Microbiology 2: 217–226.PubMedCrossRefGoogle Scholar
  31. Nübel, U., M. M. Bateson, M. T. Madigan, M. Kühl & D. M. Ward, 2001. Diversity and distribution in hypersaline microbial mats of bacteria related to Chloroflexus spp. Applied and Environmental Microbiology 67: 4365–4371.PubMedCrossRefGoogle Scholar
  32. Ollivier, B., M.-L. Fardeau, J.-L. Cayol, M. Magot, B. K. C. Patel, G. Prensier & J.-L. Garcia, 1998. Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. International Journal of Systematic Bacteriology 48: 821–828.PubMedCrossRefGoogle Scholar
  33. Oren, A., 1997. Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiology Journal 14: 233–242.CrossRefGoogle Scholar
  34. Oren, A., 1999. Bioenergetic aspects of halophilism. Microbiology and Molecular Biology Reviews 63: 334–348.PubMedGoogle Scholar
  35. Oren, A., 2000. Salts and brines. In Whitton, B. A. & M. Potts (eds), Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer, Dordrecht: 281–306.Google Scholar
  36. Oren, A., 2002. Halophilic Microorganisms and their Environments. Kluwer, Dordrecht.Google Scholar
  37. Oren, A., 2005. Microscopic examination of microbial communities along a salinity gradient in saltern evaporation ponds: a ‘halophilic safari’. In Gunde-Cimerman, N., A. Oren & A. Plemenitaš (eds), Adaptation to Life at High Salt Concentrations in Archaea, Bacteria. and Eukarya. Springer, Dordrecht: 41–57.CrossRefGoogle Scholar
  38. Oren, A., 2006. Life at high salt concentrations. In Dworkin, M., S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt (eds), The Prokaryotes: A handbook on the Biology of Bacteria: Ecophysiology and Biochemistry, Vol. 2. Springer, New York: 263–282.Google Scholar
  39. Oren, A., M. Kühl & U. Karsten, 1995. An endevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Marine Ecology Progress Series 128: 151–159.CrossRefGoogle Scholar
  40. Oren, A., D. Ionescu, A. Lipski & K. Altendorf, 2005. Fatty acid analysis of a layered community of cyanobacteria developing in a hypersaline gypsum crust. Algological Studies 117: 1–9.CrossRefGoogle Scholar
  41. Pierson, B. K., D. Valdez, M. Larsen, E. Morgan & E. E. Mack, 1994. Chloroflexus-like organisms from marine and hypersaline environments: distribution and diversity. Photosynthesis Research 41: 35–52.CrossRefGoogle Scholar
  42. Revsbech, N. P., 1989. An oxygen microsensor with a guard cathode. Limnology and Oceanography 34: 474–478.Google Scholar
  43. Revsbech, N. P., B. B. Jørgensen & O. Brix, 1981. Primary production of microalgae in sediments measured by oxygen microprofile, H14CO3 fixation, and oxygen exchange methods. Limnology and Oceanography 26: 717–730.Google Scholar
  44. Revsbech, N. P., B. B. Jørgensen & T. H. Blackburn, 1983. Microelectrode studies of the photosynthesis and O2, H2S, and pH profiles of a microbial mat. Limnology and Oceanography 28: 1062–1074.Google Scholar
  45. Rothschild, L. J., L. J. Giver, M. R. White & R. L. Mancinelli, 1994. Metabolic activity of microorganisms in evaporites. Journal of Phycology 30: 431–438.PubMedCrossRefGoogle Scholar
  46. Sørensen, K. B., D. E. Canfield & A. Oren, 2004. Salt responses of benthic microbial communities in a solar saltern (Eilat, Israel). Applied and Environmental Microbiology 70: 1608–1616.PubMedCrossRefGoogle Scholar
  47. Sørensen, K. B., D. E. Canfield, A. P. Teske & A. Oren, 2005. Community composition of a hypersaline endoevaporitic microbial mat (Israel). Applied and Environmental Microbiology 71: 7352–7365.PubMedCrossRefGoogle Scholar
  48. Spear, J. R., R. E. Ley, A. B. Berger & N. E. Pace, 2003. Complexity in natural microbial ecosystems: the Guerrero Negro experience. Biological Bulletin 204: 168–173.PubMedCrossRefGoogle Scholar
  49. Teske, A., K.-U. Hinrichs, V. Edgcomb, A. de Vera Gomez, D. Kysela, S. P. Sylva, M. L. Sogin & H. W. Jannasch, 2002. Microbial diversity in hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Applied and Environmental Microbiology 68: 1994–2007.PubMedCrossRefGoogle Scholar
  50. van der Wielen, P. W. J. J., H. Bolhuis, S. Borin, D. Daffonchio, C. Corselli, L. Giuliano, G. D’Auria, G. J. de Lange, A. Huebner, S. P. Varnavas, J. Thomson, C. Tamburini, D. Marty, T. J. McGenity, K. N. Timmis & BioDeep Scientific Party, 2005. The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307: 121–123.PubMedCrossRefGoogle Scholar
  51. Volkmann, M., A. A. Gorbushina, L. Kedar & A. Oren, 2006. The structure of euhalothece-362, a novel red-shifted mycosporine-like amino acid, from a halophilic cyanobacterium (Euhalothece sp.). FEMS Microbiology Letters 258: 50–54.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Aharon Oren
    • 1
    • 2
  • Ketil B. Sørensen
    • 3
  • Don E. Canfield
    • 4
  • Andreas P. Teske
    • 5
  • Danny Ionescu
    • 1
    • 2
  • André Lipski
    • 6
  • Karlheinz Altendorf
    • 7
  1. 1.The Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.The Moshe Shilo Minerva Center for Marine BiogeochemistryThe Hebrew University of JerusalemJerusalemIsrael
  3. 3.Danish Technological InstituteAarhusDenmark
  4. 4.Danish Center for Earth System Science, Institute of BiologyUniversity of Southern DenmarkOdenseDenmark
  5. 5.Department of Marine SciencesUniversity of North Carolina at Chapel HillChapel HillUSA
  6. 6.MicroPro GmbHGommernGermany
  7. 7.Fachbereich Biologie/Chemie, Abteilung MikrobiologieUniversität OsnabrückOsnabrückGermany

Personalised recommendations