Hydrobiologia

, Volume 627, Issue 1, pp 99–116

Seasonal and spatial variability of virio-, bacterio-, and picophytoplanktonic abundances in three peri-alpine lakes

  • Sébastien Personnic
  • Isabelle Domaizon
  • Ursula Dorigo
  • Lyria Berdjeb
  • Stéphan Jacquet
Primary research paper

Abstract

Flow cytometry (FCM) was used to assess microbial community abundances and patterns in three natural, large and deep peri-alpine hydrosystems, i.e., lakes Annecy (oligotrophic), Bourget, and Geneva (mesotrophic). Picocyanobacteria, small eukaryotic autotrophs, heterotrophic prokaryotes, and viruses were studied in the 0–50 m surface layers to highlight the impact of both physical and chemical parameters as well as possible biotic interactions on the functioning of microbial communities. Some specificities were recorded according to the trophic status of each ecosystem such as the higher number of viruses and heterotrophic bacteria in mesotrophic environments (i.e., Lakes Geneva and Bourget) or the higher abundance of picocyanobacteria in the oligotrophic Lake Annecy. However, both seasonal (temperature) and spatial (depth) variations were comparatively more important than the trophic status in driving the microbial communities’ abundances in these three lakes, as revealed by principal component analysis (PCA). A strong viral termination of the heterotrophic bacterial blooms could be observed in autumn for each lake, in parallel to the mixing of the upper lit layers. As virus to bacteria ratio (VBR) was indeed very high at this period with values varying between 87 and 114, such important relationships between viruses and bacteria were likely. The magnitudes of seasonal variations in VBR, with the highest values ever reported so far, were largely greater than the magnitude of theoretical variations due to the trophic status, suggesting also a strong seasonality in virioplankton production associated to prokaryotic dynamics. FCM analyses allowed discriminating several viral groups. Virus-Like Particles group 1 (VLP1) and group 2 (VLP2) were always observed and significantly correlated to bacteria for the former and chlorophyll a and picocyanobacteria for the latter, suggesting that most of VLP1 and VLP2 could be bacteriophages and cyanophages, respectively. On the basis of these results, new ways of investigation emerge concerning the study of relationships between specific picoplanktonic groups; and overall these results provide new evidence of the necessity to consider further viruses for a better understanding of lake plankton ecology.

Keywords

Viruses Bacteria Flow cytometry Lake Trophic status 

References

  1. Abedon, S. T., 2006. Phage ecology. In Abedon, C. S. T. (ed.), The Bacteriophages. Oxford University Press, Oxford: 37–46.Google Scholar
  2. Anesio, A. M., C. Hollas, W. Granéli & J. Laybourn-Parry, 2004. Influence of humic substances on bacterial and viral dynamics in freshwaters. Applied and Environmental Microbiology 70: 4848–4854.PubMedCrossRefGoogle Scholar
  3. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, M. A. Meyer Reil & T. F. Thingstad, 1983. The ecological role of water column microbes in the sea. Marine Ecology Progress Series 10: 257–263.CrossRefGoogle Scholar
  4. Bergh, O., K. Y. Borsheim, G. Bratbak & M. Heldal, 1989. High abundance of viruses found in aquatic environments. Nature 340: 467–468.PubMedCrossRefGoogle Scholar
  5. Bouvy, M., R. Arfi, P. Cecchi, D. Corbin, D. Pagano, L. Saint Jean & S. Thomas, 1998. Trophic coupling between bacterial and phytoplanktonic compartments in shallow tropical reservoirs (Ivory Coast, West Africa). Aquatic Microbial Ecology 15: 25–37.CrossRefGoogle Scholar
  6. Bratbak, G., M. Heldal, S. Norland & T. F. Thingstad, 1990. Viruses as partners in spring bloom microbial trophodynamics. Applied and Environmental Microbiology 56: 1400–1405.PubMedGoogle Scholar
  7. Bratbak, G., O. H. Haslund, I. M. Head, A. Naess & T. Roeggen, 1992. Giant marine viruses. Marine Ecology Progress Series 85: 201–202.CrossRefGoogle Scholar
  8. Bratbak, G., M. Heldal, T. F. Thingstad & P. I. Tuomi, 1996. Dynamics of virus abundance in coastal sea water. FEMS Microbiology Ecology 19: 263–269.CrossRefGoogle Scholar
  9. Breitbart, M., L. R. Thompson, C. A. Suttle & M. B. Sullivan, 2007. Exploring the vast diversity of marine viruses. Oceanography 20: 135–139.Google Scholar
  10. Brum, J. R., G. F. Stewart, S. C. Jiang & R. Jellison, 2005. Spatial and temporal variability of prokaryotes, viruses, and viral infections of prokaryotes in an alkaline, hypersaline lake. Aquatic Microbial Ecology 41: 247–260.CrossRefGoogle Scholar
  11. Brussaard, C. P. D., 2004. Optimization of procedures for counting viruses by flow cytometry. Applied and Environmental Microbiology 70: 1506–1513.PubMedCrossRefGoogle Scholar
  12. Brussaard, C. P. D., S. W. Wilhelm, F. T. Thingstad, M. G. Weinbauer, G. Bratbak, M. Heldal, S. A. Kimmance, M. Middelboe, K. Nagasaki, J. H. Paul, D. C. Schroeder, C. A. Suttle, D. Vaqué & K. E. Wommack, 2008. Global-scale processes with a nanoscale drive: the role of marine viruses. The ISME Journal 2: 575–578.PubMedCrossRefGoogle Scholar
  13. Callieri, C., 2007. Picocphytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshwater Reviews 1: 1–28.Google Scholar
  14. Callieri, C. & M. L. Pinolini, 1995. Picoplankton in Lake Maggiore, Italy. Internationale Revue der Gesamten Hydrobiologie 80: 491–501.CrossRefGoogle Scholar
  15. Callieri, C. & J. G. Stockner, 2000. Picocyanobacteria success in oligotrophic lakes: fact or fiction? Journal of Limnology 59: 72–76.Google Scholar
  16. Castberg, T., A. Larsen, R. A. Sandaa, C. P. D. Brussaard, J. K. Egge, M. Heldal, R. Thyrhaug, E. J. van Hannen & G. Bratbak, 2001. Microbial population dynamics and diversity during a bloom of the marine coccolithophorid Emiliania huxleyi (Haptophyta). Marine Ecology Progress Series 221: 39–46.CrossRefGoogle Scholar
  17. Chen, F., J. R. Lu, B. J. Binder, Y. C. Liu & R. E. Hodson, 2001. Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR gold. Applied and Environmental Microbiology 67: 539–545.PubMedCrossRefGoogle Scholar
  18. Clasen, J. L., S. N. Brigden, J. P. Payet & C. A. Suttle, 2008. Evidence that viral abundance across oceans and lakes is driven by different biological factors. Freshwater Biology 53(6): 1090–1100.CrossRefGoogle Scholar
  19. Cochlan, W. P., J. Wilkner, G. F. Steward, D. C. Smith & F. Azam, 1993. Spatial distribution of viruses, bacteria, chorophyll a in neritic, oceanic and estuarine environments. Marine Ecology Progress Series 92: 77–87.CrossRefGoogle Scholar
  20. Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in fresh and seawater ecosystem: a cross-system overview. Marine Ecology Progress Series 43: 1–10.CrossRefGoogle Scholar
  21. Colombet, J., T. Sime-Ngando, H. M. Cauchie, G. Fonty, L. Hoffmann & G. Demeure, 2006. Depth-related gradients of viral activity in Lake Pavin. Applied and Environmental Microbiology 72: 4440–4445.PubMedCrossRefGoogle Scholar
  22. Courties, C., A. Vaquer, M. Trousselier, M. J. Chrétiennot-Dinet, J. Neveux, C. Machado & H. Claustre, 1994. Smallest eukaryotic organism. Nature 370: 255.CrossRefGoogle Scholar
  23. Crosbie, N. D., K. Teubner & T. Weisse, 2003. Flow cytometric mapping provides novel insights into the seasonal and vertical distributions of freshwater autotrophic picoplankton. Aquatic Microbial Ecology 33: 53–66.CrossRefGoogle Scholar
  24. Culley, A. I. & N. A. Welschmeyer, 2002. The abundance, distribution and correlation of viruses, phytoplankton and prokaryotes along a Pacific Ocean transect. Limnology and Oceanography 47: 1508–1513.Google Scholar
  25. Currie, D. J., 1990. Large scale variability and interactions among phytoplankton, bacterioplankton and phosphorous. Limnology and Oceanography 35: 1437–1455.CrossRefGoogle Scholar
  26. Danovaro, R., A. Dell’Anno, A. Trucco, M. Serresi & S. Vanucci, 2001. Determination of virus abundance in marine sediments. Applied and Environmental Microbiology 67: 1384–1387.PubMedCrossRefGoogle Scholar
  27. Del Giorgio, P. A. & R. H. Peters, 1993. Balance between phytoplankton production and plankton respiration in lakes. Canadian Journal of Fisheries and Aquatic Sciences 50: 282–289.CrossRefGoogle Scholar
  28. Del Giorgio, P. A. & G. Scarborough, 1995. Increase in the proportion of metabolically active bacteria along gradients of enrichment in freshwater and marine plankton: implications for estimates of bacterial growth and production rates. Journal of Plankton Research 17: 1879–1903.CrossRefGoogle Scholar
  29. Duhamel, S. & S. Jacquet, 2006. Flow cytometric analysis of bacteria- and virus-like particles in lake sediments. Journal of Microbiological Methods 64: 316–332.PubMedCrossRefGoogle Scholar
  30. Duhamel, S., I. Domaizon, S. Personnic & S. Jacquet, 2006. Assessing the microbial community dynamics and the role of bacteriophages as mortality agents in Lake Geneva. Journal of Water Science 19: 115–126.Google Scholar
  31. Gasol, J. M. & C. M. Duarte, 2000. Comparative analyses in aquatic microbial ecology: how far do they go? FEMS Microbiology Ecology 31: 99–106.PubMedCrossRefGoogle Scholar
  32. Gasol, J. M., A. M. Simons & J. Kalff, 1995. Patterns in the top-down versus bottom-up regulation of heterotrophic nanoflagellates in temperate lakes. Journal of Plankton Research 17: 1879–1903.CrossRefGoogle Scholar
  33. Gobler, C. J., T. W. Davis, S. N. Deonarine, M. A. Saxton, P. J. Lavrentyev, F. J. Jochem & S. W. Wilhelm, 2008. Grazing and virus-induced mortality of microbial populations before and during the onset of annual hypoxia in Lake Erie. Aquatic Microbial Ecology 51: 117–128.CrossRefGoogle Scholar
  34. Goddard, V., A. C. Baker, J. E. Davy, D. G. Adams, S. J. Thackeray, S. C. Maberly & W. H. Wilson, 2005. Temporal distribution of viruses, bacteria and phytoplankton throughout the water column in a freshwater hypereutrophic lake. Aquatic Microbial Ecology 39: 211–223.CrossRefGoogle Scholar
  35. Guixa-Boixereu, N., D. Vaqué, J. M. Gasol & C. Pedros-Alio, 1999. Distribution of viruses and their potential effect on bacterioplankton in an oligotrophic marine system. Aquatic Microbial Ecology 19: 205–213.CrossRefGoogle Scholar
  36. Hambly, E. & C. A. Suttle, 2005. The viriosphere, diversity, and genetic exchange within phage communities. Current Opinion in Microbiology 8: 444–450.PubMedCrossRefGoogle Scholar
  37. Jacquet, S., J. F. Lennon & D. Vaulot, 1998. Application of a compact and automatic sea water sampler to high frequency picoplankton studies. Aquatic Microbial Ecology 14: 309–314.CrossRefGoogle Scholar
  38. Jacquet, S., M. Heldal, D. Iglesias-Rodriguez, A. Larsen, W. H. Wilson & G. Bratbak, 2002. Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection. Aquatic Microbial Ecology 27: 111–124.CrossRefGoogle Scholar
  39. Jacquet, S., I. Domaizon, S. Personnic, S. Duhamel, M. Heldal, A. S. Pradeep Ram & T. Sime-Ngando, 2005. Estimates of protozoan and virus-mediated mortality of bacterioplankton in Lake Bourget (France). Freshwater Biology 50: 627–645.CrossRefGoogle Scholar
  40. Jeppesen, E., M. Erlandsen & M. Sondergaard, 1997. Can simple empirical equations describe the seasonal dynamics of bacterioplankton in lakes: an eight-year study in shallow hypertrophic and biologically highly dynamic lake Sobygard, Denmark. Microbial Ecology 34: 11–26.PubMedCrossRefGoogle Scholar
  41. Jiang, C. S., & J. H. Paul, 1995. Viral contribution to dissolved DNA in the marine environment: differential centrifugation and kingdom probing. Applied and Environmental Microbiology 61: 2235–2241.PubMedGoogle Scholar
  42. Larsen, A., T. Castberg, R. A. Sandaa, C. P. D. Brussaard, J. Egge, M. Heldal, A. Paulino, R. Thyrhaug, E. J. van Hannen & G. Bratbak, 2001. Population dynamics and diversity of phytoplankton, bacteria and viruses in a seawater enclosure. Marine Ecology Progress Series 221: 47–57.CrossRefGoogle Scholar
  43. Larsen, A., G. A. F. Flaten, R. A. Sandaa, T. Castberg, R. Thyrhaug, S. R. Erga, S. Jacquet & G. Bratbak, 2004. Spring phytoplankton bloom dynamics in Norwegian coastal waters: microbial community succession and diversity. Limnology and Oceanography 49: 180–190.Google Scholar
  44. Li, W. K. W. & P. M. Dickie, 2001. Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal Inlet (Belford bassin) by flow cytometry. Cytometry 44: 236–246.PubMedCrossRefGoogle Scholar
  45. Maranger, R. & D. F. Bird, 1995. Viral abundance in aquatic systems: a comparison between marine and fresh waters. Marine Ecology Progress Series 121: 217–226.CrossRefGoogle Scholar
  46. Marie, D., C. P. D. Brussaard, R. Thyrhaug, G. Bratbak & D. Vaulot, 1999. Enumeration of marine viruses in culture and natural samples by flow cytometry. Applied and Environmental Microbiology 65: 45–52.PubMedGoogle Scholar
  47. Marie D., F. Partensky, N. Simon, L. Guillou & D. Vaulot D., 2000. Flow cytometry analysis of marine picoplankton. In DeMaggio, S. (ed), Living Colors: Protocols in Flow Cytometry and Cell sorting. Springer, Berlin: 421–454.Google Scholar
  48. Mathias, C. B., A. K. T. Kirchner & B. Velimirov, 1995. Seasonal variations of virus abundance and viral control of the bacterial production in a backwater system of the Danube River. Applied and Environmental Microbiology 61: 3734–3740.PubMedGoogle Scholar
  49. Miki, T. & S. Jacquet, 2008. Complex interactions in the microbial world: under-explored key links between viruses, bacteria and protozoan grazers in aquatic environments. Aquatic Microbial Ecology 51: 195–208.CrossRefGoogle Scholar
  50. Murray, A. G. & G. A. Jackson, 1992. Viral dynamics: a model of the effects of size, shape, motion and abundance of single-celled planktonic organisms and other particles. Marine Ecology Progress Series 89: 103–116.CrossRefGoogle Scholar
  51. Noble, R. T. & J. A. Fuhrman, 1998. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquatic Microbial Ecology 14: 113–118.CrossRefGoogle Scholar
  52. Padisak, J., L. Krienitz, R. Koschel & J. Nedoma, 1997. Deep-layer autotrophic picoplankton maximum in the oligotrophic Lake Stechlin, Germany: origin, activity, development and erosion. European Journal of Phycology 32: 403–416.CrossRefGoogle Scholar
  53. Paul J. H. & S. C. Jiang, 2001. Lysogeny and transduction. In Paul, J. H. (ed), Methods in Microbiology: Marine Microbiology, Vol. 30. Academic Press, London: 105–125.Google Scholar
  54. Payet, J. P. & C. A. Suttle, 2008. Physical and biological correlates of virus dynamics in the southern Beaufort Sea and Amundsen Gulf. Journal of Marine Systems 74: 933–945.CrossRefGoogle Scholar
  55. Raven, J. A., 1986. Physiological consequences of extremely small size for autotrophic organisms in the sea. Canadian Bulletin of Fisheries and Aquatic Sciences 241: 1–70.Google Scholar
  56. Rodriguez, F., E. Fernandez, R. N. Head, D. S. Harbour, G. Bratbak, M. Heldal & R. P. Harris, 2000. Temporal variability of viruses, bacteria, phytoplankton and zooplankton in the western English Channel off Plymouth. Journal of the Marine Biological Association of the United Kingdom 80: 575–586.CrossRefGoogle Scholar
  57. Rose, J. M., D. A. Caron, M. E. Sieracki & N. Poulton, 2004. Counting heterotrophic nanoplanktonic protists in cultures and aquatic communities by flow cytometry. Aquatic Microbial Ecology 34: 263–277.CrossRefGoogle Scholar
  58. Shortreed, K. S. & J. G. Stockner, 1986. Trophic status of 19 subarctic lakes in the Yukon Territory. Canadian Journal of Fisheries and Aquatic Sciences 43: 797–805.Google Scholar
  59. Sime-Ngando, T., J. Colombet, S. Personnic, I. Domaizon, U. Dorigo, P. Perney, J.-C. Hustache, E. Viollier & S. Jacquet, 2008. Short-term variations in abundances and potential activities of viruses, bacteria and nanoprotists in Lake Bourget (France). Ecological Research 23: 851–861.CrossRefGoogle Scholar
  60. Suttle, C. A., 2005. Viruses in the sea. Nature 437: 356–361.PubMedCrossRefGoogle Scholar
  61. Suttle, C. A., 2007. Marine viruses—major players in the global ecosystem. Nature Reviews Microbiology 5: 801–812.PubMedCrossRefGoogle Scholar
  62. Tzaras, A. & F. R. Pick, 1994. The relationships between bacterial and heterotrophic nanoflagellates for controlling bacterial abundance in oligotrophic and mesotrophic temperate lakes. Marine Microbial Food Webs 8: 347–355.Google Scholar
  63. Vaulot, D., 1989. CYTOPC: processing software for flow cytometric data. Signal and Noise 2: 8.Google Scholar
  64. Vaulot, D., C. Courties & F. Partensky, 1989. A simple method to preserve oceanic phytoplankton for flow cytometry. Cytometry 10: 629–635.PubMedCrossRefGoogle Scholar
  65. Vrede, K., U. Stensdotter & E. S. Lindström, 2003. Viral and bacterioplankton dynamics in two lakes with different humic contents. Microbial Ecology 46: 406–415.PubMedCrossRefGoogle Scholar
  66. Weinbauer, M. G., 2004. Ecology of prokaryotic viruses. FEMS Microbiology Reviews 28: 127–181.PubMedCrossRefGoogle Scholar
  67. Weinbauer, M. G. & M. G. Hofle, 1998. Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Applied and Environmental Microbiology 64: 431–438.PubMedGoogle Scholar
  68. Weinbauer, M. G. & P. Peduzzi, 1995. Effect of virus-rich high molecular weight concentrates of seawater on the dynamics of dissolved amino acids and carbohydrates. Marine Ecology Progress Series 127: 245–253.CrossRefGoogle Scholar
  69. Weinbauer, M. G. & F. Rassoulzadegan, 2004. Are viruses driving microbial diversification and diversity. Environmental Microbiology 6: 1–11.PubMedCrossRefGoogle Scholar
  70. Weisse, T. & U. Kenter, 1991. Ecological characteristics of autotrophic picoplankton in a prealpine lake. Internationale Revue der gesamten Hydrobiologie 76: 493–504.CrossRefGoogle Scholar
  71. Wilhelm, S. W. & C. A. Suttle, 1999. Viruses and nutrient cycles in the sea—viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49: 781–788.CrossRefGoogle Scholar
  72. Wilson, W. H. & N. H. Mann, 1997. Lysogenic and lytic viral production in marine microbial communities. Aquatic Microbial Ecology 13: 95–100.CrossRefGoogle Scholar
  73. Wommack, K. E. & R. R. Colwell, 2000. Virioplankton: viruses in aquatic ecosystems. Microbiology and Molecular Biology Reviews 64: 69–114.PubMedCrossRefGoogle Scholar
  74. Wommack, K., R. T. Hill, M. Kessel, E. Russek-Cohen & R. R. Colwell, 1992. Distribution of viruses in the Chesapeake Bay. Applied and Environmental Microbiology 58: 2965–2970.PubMedGoogle Scholar
  75. Xenopoulos, M. A. & D. F. Bird, 1997. Virus à la sauce Yo-Pro: microwave-enhanced staining for counting viruses by epifluorescence microscopy. Limnology and Oceanography 42: 1648–1650.CrossRefGoogle Scholar
  76. Zinabu, G. M. & W. D. Taylor, 1997. Bacteria–chlorophyll relationships in Ethiopian lakes of varying salinity: are soda lakes different? Journal of Plankton Research 19: 647–654.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Sébastien Personnic
    • 1
  • Isabelle Domaizon
    • 2
  • Ursula Dorigo
    • 1
  • Lyria Berdjeb
    • 1
  • Stéphan Jacquet
    • 1
  1. 1.INRA, UMR CARRTEL, Station d’Hydrobiologie LacustreThonon-les-Bains cedexFrance
  2. 2.Université de Savoie, UMR CARRTELLe Bourget du Lac cedexFrance

Personalised recommendations