, Volume 625, Issue 1, pp 117–134 | Cite as

Limnological variability and pelagic fish abundance (Stolothrissa tanganicae and Lates stappersii) in Lake Tanganyika

  • P.-D. PlisnierEmail author
  • H. Mgana
  • I. Kimirei
  • A. Chande
  • L. Makasa
  • J. Chimanga
  • F. Zulu
  • C. Cocquyt
  • S. Horion
  • N. Bergamino
  • J. Naithani
  • E. Deleersnijder
  • L. André
  • J.-P. Descy
  • Y. Cornet
Primary research paper


The abundance of two main pelagic fish species in Lake Tanganyika (Stolothrissa tanganicae and Lates stappersii) has always been observed to fluctuate considerably at different time scales. The inverse correlation between the abundance of these species has often been interpreted as the consequence of predator−prey relations (avoidance behaviour by the prey). However, currently the two species often appear spatially segregated in the lake, S. tanganicae dominating in the north while L. stappersii is generally abundant in the south where it feeds mostly on shrimps. A fluctuating abundance of the species is nevertheless observed. As these fish species have a major importance for the fisheries, we investigated the limnological variability in relation to the short-term variability of fish catches. The abundance of S. tanganicae was positively correlated to plankton biomass (r = 0.65), while water transparency (r = 0.56), depth of mixed layer (r = −0.70) and oxygenated water appeared important drivers for the abundance of L. stappersii. Alternating “mixing” and “stable” states of the epilimnion related to seasonal and internal waves variability are probably determinant for the short-term variability in abundance of S. tanganicae and L. stappersii. In the framework of this study, remote sensing has shown a potentially interesting application for fisheries research at Lake Tanganyika. We observed a close correspondence between phytoplankton blooms at the time of trade winds changes and increased catches of S. tanganicae in the south. The anti-correlated abundance of S. tanganicae and L. stappersii probably mainly reflects the underlying fluctuating limnological environment. Fisheries studies need to integrate limnological and planktonic monitoring to better understand large and complex ecosystems such as Lake Tanganyika.


Stolothrissa tanganicae Lates stappersii Tanganyika Fisheries Visual predation Predator–prey 



This study was funded by the Federal Science Policy, Belgium (BELSPO) in the framework of A STEREO/CLIMFISH project (“Climate change impact on the sustainable use of Lake Tanganyika fisheries”). Many thanks to C. Petit, J. Vandenabeele, K. Ruddick, H. Gonz and J.-C. Micha for their suggestions during this project. The Belgian Development Cooperation financed the monitoring at Lake Tanganyika through a framework agreement with the Royal Museum for Central Africa (in Tervuren). We greatly appreciated the support of G. Gryseels, and the help of M. De Scheemaecker. H. Hughes has contributed useful comments. We thank P. Bwathondi, B. Ngatunga, D. Chitamwebwa and staff at TAFIRI (Tanzanian Fisheries Research Institute). At the Department of Fisheries in Zambia (DOF), we particularly thank C. Kapasa, H. Phiri, D. Synienza and staff at Mpulungu for their involvement. A. Cohen, K. Lezzar, E. Michel, C. O’Reilly of the Nyanza project (University of Arizona) have provided appreciated collaboration. At Namur University, B. Leporcq, F. Darchambeau, S. Sténuite, V. Gosselain, Y. Mine and others have helped the project. Judy and John Wickens have provided an appreciated help. We thank J.-M. Beckers from the GHER-AGO (ULg) and his collaborators. We thank A. Azcarate and A. Barth from the Ocean Circulation Group (College of Marine Science, University of South Florida). Thanks to S. Loiselle (Università degli Studi di Siena) for useful comments. E. Deleersnijder is a Research Associate with the Belgian National Fund for Scientific Research (FNRS).


  1. Bannerot, S. P. & C. B. Austin, 1983. Using frequency distributions of catch per unit effort to measure fish-stock abundance. Transactions of the American Fisheries Society 112: 608–617.CrossRefGoogle Scholar
  2. Barnes, J. T., A. D. Maccall, L. D. Jacobson & P. Wolf, 1992. Recent population trends and abundance estimates for the pacific sardine (Sardinops sagax). California Cooperative Oceanic Fisheries Investigations Reports 33: 60–75.Google Scholar
  3. Bergamino, N., S. A. Loiselle, A. Cozar, A. M. Dattilo, L. Bracchini & C. Rossi, 2007. Examining the dynamics of phytoplankton biomass in Lake Tanganyika using Empirical Orthogonal Functions. Ecological modelling 204: 156–162.CrossRefGoogle Scholar
  4. Chèné, G., 1975. Etude des problèmes relatifs aux fluctuations piscicoles du lac Tanganyika. Unpublished Mémoire de licence, University of Liège, Belgium: 108 pp.Google Scholar
  5. Chapman, D. W., 1976. Summary of biological research on lake Tanganyika from July 1973 to September 1976. United Nations Food and Agriculture Organisation Report FI:DP URT/71/012 46: 22 pp.Google Scholar
  6. Cocquyt, C. & W. Vyverman, 2005. Phytoplankton in Lake Tanganyika: a comparison of community composition and biomass off Kigoma with Previous Studies 27 Years Ago. Journal of Great Lakes Research 31: 535–546.CrossRefGoogle Scholar
  7. Coenen, E. J., P. Paffen & E. Nikomeze, 1998. Catch per unit of effort (CPUE) study for different areas and fishing gears of Lake Tanganyika. FAO/FINNIDA Research for the Management of Fisheries on Lake Tanganyika. GCP/RAF/271/FIN-TD/80 (En): 86 pp.Google Scholar
  8. Coulter, G. W., 1977. Approaches to estimating fish biomass and potential yield in Lake Tanganyika. Journal of Fish Biology 11: 393–408.CrossRefGoogle Scholar
  9. Coulter, G. W. (ed.), 1991. Lake Tanganyika and its life. Oxford University Press, New York: 354 pp.Google Scholar
  10. Dagnelie, P., 1986. Analyse statistique à plusieurs variables. Les Presses Agronomiques de Gembloux: 362 pp.Google Scholar
  11. Davis, M. W. & B. L. Olla, 1992. The role of visual cues in the facilitation of growth in a schooling fish. Environmental Biology of Fish 34: 421–424.CrossRefGoogle Scholar
  12. De Bont, A. F., 1972. La productivité du Lac Tanganyika. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte. Limnologie 18: 656–660.Google Scholar
  13. De Wever, A., K. Muylaert, K. Van Der Gucht, S. Pirlot, C. Cocquyt, J.-P. Descy, P.-D. Plisnier & W. Vyverman, 2005. Bacterial community composition in Lake Tanganyika: vertical and horizontal heterogeneity. Applied and Environmental Microbiology 71: 5029–5037.PubMedCrossRefGoogle Scholar
  14. De Wever, A., K. Muylaert, C. Cocquyt, J. Van Wichelen, P.-D. Plisnier & W. Vyverman, 2007. Seasonal and spatial variability in the abundance of auto- and heterotrophic plankton in Lake Tanganyika. Fundamental and Applied Limnology 170: 49–63.CrossRefGoogle Scholar
  15. Descy, J.-P., M.-A. Hardy, S. Stenuite, S. Pirlot, B. Leporcq, I. Kimirei, B. Sekadende, S. R. Mwaitega & D. Sinyenza, 2005. Phytoplankton pigments and community composition in Lake Tanganyika. Freshwater Biology 50: 668–684.CrossRefGoogle Scholar
  16. Ellis, C. M. A., 1978. Biology of Luciolates stappersi in Lake Tanganyika (Burundi). Transactions of the American Fisheries Society 107: 557–566.CrossRefGoogle Scholar
  17. FAO, 1984. Papers presented at the Expert Consultation on the regulation of fishing effort (fishing mortality). Rome, 17–26 January 1983. A preparatory meeting for the FAO World Conference on fisheries management and development. United Nations Food and Agriculture Organisation. Fisheries Report 289: 214 pp.Google Scholar
  18. Fennel, K. & E. Boss, 2003. Subsurface maxima of phytoplankton and chlorophyll: steady-state solutions from a simple model. Limnology and Oceanography 48(4): 1521–1534.CrossRefGoogle Scholar
  19. Gourgue, G., E. Deleersnijder & L. White, 2007. Toward a generic method for studying water renewal, with application to the epilimnion of Lake Tanganyika. Estuarine, Coastal and Shelf Science 74: 628–640.CrossRefGoogle Scholar
  20. Gulland, J. A., 1983. Fish stock assessment. A manual of basic methods. John Wiley & Sons, Chichester: 223 pp.Google Scholar
  21. Hecky, R. E. & E. J. Fee, 1981. Primary production and rates of algal growth in Lake Tanganyika. Limnology and Oceanography 26: 532–547.Google Scholar
  22. Henderson, H. F., G. W. Coulter, M. J. Mann & G. Wetherall, 1972. Predator–prey relationships and the pelagic fishery potential in Lake Tanganyika with particular reference to the purse seine fishery of Burundi. United Nations Food and Agriculture Organisation BD1/70/508: 1–43.Google Scholar
  23. Herman, C., 1978. La pêche dans le lac Tanganyika: situation actuelle et perspectives de développement. United Nations Food and Agriculture Organisation. Committee for Inland Fisheries of Africa CPCA 5: 16–41.Google Scholar
  24. Jackson, R. B., S. R. Carpenter, C. N. Dahm, D. M. McKnight, R. J. Naiman, S. L. Postel & S. W. Running, 2001. Water in a changing world. Ecological Application 11(4): 1027–1045.CrossRefGoogle Scholar
  25. Kimirei, I. A. & Y. D. Mgaya, 2007. Influence of environmental factors on seasonal changes in clupeid catches in the Kigoma area of Lake Tanganyika. African Journal of Aquatic Science 32: 291–298.CrossRefGoogle Scholar
  26. Kurki, H., P. Mannini, I. Vuorinen, E. Aro, H. Mölsä & O. V. Lindqvist, 1999. Macrozooplankton communities in Lake Tanganyika indicate food chain differences between the northern part and the main basins. Hydrobiologia 407: 123–129.CrossRefGoogle Scholar
  27. Langenberg, V., L. W. Mwape, K. Tschibangu, J.-M. Tumba, A.-A. Koelmans, R. Roijackers, K. Salonen, J. Sarvala & H. Mölsä, 2002. Comparison of thermal stratification, light attenuation and Chlorophyll a dynamics between the ends of Lake Tanganyika. Aquatic Ecosystem Health & Management 5: 255–265.CrossRefGoogle Scholar
  28. Magnuson, J. J., A. L. Beckel, E. Mills & S. B. Brandt,1985. Surviving winter hypoxia: behavioral adaptations of fishes in a northern Wisconsin winterkill lake. Environmental Biology of Fishes 14: 241–250.Google Scholar
  29. Mangel, M. & P. E. Smith, 1990. Presence−absence sampling for fisheries management. Canadian Journal of Fisheries and Aquatic Sciences 47: 1875–1887.CrossRefGoogle Scholar
  30. Mann, M. J., F. Bashirwa, C. M. Ellis, J. B. Nahabakomeye & H. O. Enderlein. 1973. A preliminary report on fish biology and stock assessment in Lake Tanganyika (Burundi). United Nations Food and Agriculture Organisation Report Fl:DP/BD1/73/020/5: 1–58.Google Scholar
  31. Mannini, P., 1998. Geographical distribution patterns of pelagic fish and macrozooplankton in Lake Tanganyika. FAO/FINNIDA Research for the Management of Fisheries on Lake Tanganyika. GCP/RAF/271/FIN-TD/83 (En): 125 pp.Google Scholar
  32. Mannini, P., E. Aro, I. Katonda, B. Kassaka, C. Mambona, G. Milindi, P. Paffen & P. Verburg, 1996. Pelagic fish stocks of Lake Tanganyika: biology exploitation. FAO/FINNIDA Research for the Management of Fisheries on Lake Tanganyika.GCP/RAF/271/FIN-TD/53 (En): 85 pp.Google Scholar
  33. Mannini, P., I. Katonda, B. Kissaka & P. Verburg, 1999. Feeding ecology of Lates stappersii in Lake Tanganyika. Hydrobiologia 407: 131–139.CrossRefGoogle Scholar
  34. Mölsä, H., J. E. Reynolds, E. J. Coenen & O. V. Lindqvist, 1999. Fisheries research towards resource management on Lake Tanganyika. Hydrobiologia 407: 1–24.CrossRefGoogle Scholar
  35. Naithani, J. & E. Deleersnijder, 2004. Are there internal Kelvin waves in Lake Tanganyika? Geophysical Research Letters 31, doi: 10.1029/2003GL019156.3.
  36. Naithani, J., E. Deleersnijder & P.-D. Plisnier, 2002. Origin of intraseasonal variability in Lake Tanganyika. Geophysical Research Letters 29, doi: 10.1029/2002GL015843.
  37. Naithani, J., E. Deleersnijder & P.-D. Plisnier, 2003. Analysis of wind-induced thermocline oscillations of Lake Tanganyika. Environmental Fluid Mechanics 3: 23–39.CrossRefGoogle Scholar
  38. Naithani, J., F. Darchambeau, E. Deleersnijder, J.-P. Descy & E. Wolanski, 2007a. Study of the nutrient and plankton dynamics in Lake Tanganyika using a reduced-gravity model. Ecological Modelling 200: 225–233.CrossRefGoogle Scholar
  39. Naithani, J., P.-D. Plisnier & E. Deleersnijder, 2007b. A simple model of the eco-hydrodynamics of the epilimnion of Lake Tanganyika. Freshwater Biology 52: 2087–2100.CrossRefGoogle Scholar
  40. O’Reilly, C. M., S. R. Alin, P.-D. Plisnier, A. S. Cohen & B. A. McKee, 2003. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424: 766–768.PubMedCrossRefGoogle Scholar
  41. Patti, B., C. Guisande, A. R. Vergara, I. Riveiro, I. Maneiro, A. Barreiro, A. Bonanno, G. Buscaino, A. Cuttitta, G. Basilone & S. Mazzola, 2008. Factors responsible for the differences in satellite-based chlorophyll a concentration between the major global upwelling areas. Estuarine, Coastal and Shelf Science 76: 775–786.CrossRefGoogle Scholar
  42. Pearce, M. J., 1988. Some effects of Lates species on pelagic and demersal fish in Zambian waters of Lake Tanganyika. In Lewis, D. (ed.), Predator–prey relationships, population dynamics and fisheries productivities of large African lakes. United Nations Food and Agriculture Organisation. Committee for Inland Fisheries of Africa 15: 69−87.Google Scholar
  43. Phiri, H. & K. Shirakihara, 1999. Distribution and seasonal movement of pelagic fish in southern Lake Tanganyika. Fisheries Research 41: 63–71.CrossRefGoogle Scholar
  44. Plisnier, P.-D., 2000. Recent climate and limnology changes in Lake Tanganyika. Verhandlung internationale Vereinigung für theoretische und angewandte. Limnologie 27: 2670–2673.Google Scholar
  45. Plisnier, P.-D. & E. C. Coenen, 2001. Pulsed and dampened annual limnological fluctuations in Lake Tanganyika. In Munawar, M. & R. Hecky (eds), The Great Lakes of the World (GLOW): food-web, health and integrity. Ecovision World Monograph Series, Leiden: 81–94.Google Scholar
  46. Plisnier, P.-D. & J.-P. Descy (eds), 2005. Climlake: climate variability as recorded in Lake Tanganyika. Final Report (2001−2005). Belgian Sciences Policy Office − Global change, ecosystems and biodiversity: 105 pp.Google Scholar
  47. Plisnier, P.-D., J.-C Micha & V. Frank, 1988. Pêche et biologie des principales espèces de poissons du lac Ihema (Rwanda). Presses Universitaires de Namur: 212 pp.Google Scholar
  48. Plisnier, P.-D., V. Langenberg, L. Mwape, D. Chitamwebwa, K. Tshibangu, & E. J. Coenen, 1996. Limnological sampling during an annual cycle at three stations on Lake Tanganyika (1993–1994). FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika. GCP/RAF/271/FIN-TD/46 (En): 124 pp.Google Scholar
  49. Plisnier, P.-D., D. Chitamwebwa, L. Mwape, K. Tshibangu, V. Langenberg & E. Coenen, 1999. Limnological annual cycle inferred from physical–chemical fluctuations at three stations of Lake Tanganyika. Hydrobiologia 407: 45–58.CrossRefGoogle Scholar
  50. Plumptre, A. J., T. R. B. Davenport, M. Behangana, R. Kityo, G. Eilu, P. Ssegawa, C. Ewango, D. Meirte, C. Kahindo, M. Herremans, J. K. Peterhans, J. D. Pilgrim, M. Wilson, M. Languy & D. Moyer, 2007. The biodiversity of the Albertine Rift. Biological Conservation 134: 178–194.CrossRefGoogle Scholar
  51. Poll, M., 1953. Poissons non Cichlidae. Résultats scientifiques de l’exploration hydrobiologique du lac Tanganika (1946–1947). Institut Royal des Sciences Naturelles de Belgique 3: 1–251.Google Scholar
  52. Roest, F. C. 1988. Predator–prey relations in northern Lake Tanganyika and fluctuations in the pelagic fish stocks. In Lewis, D. (ed.), Predator–prey relationships, population dynamics and fisheries productivities of large African lakes. Committee For Inland Fisheries of Africa Occas. Pap. 15: 104–129.Google Scholar
  53. Roest, F. C., 1993. Dynamics of the fish stocks of northern Lake Tanganyika in 1973–1980 with special reference to Limnothrissa miodon. In Marshall, B. E. & R. Mubamba (eds), Symposium on biology, stock assessment and exploitation of small pelagic fish species in the African Great Lakes region. Bujumbura, 25–28 November 1992. United Nations Food and Agriculture Organisation. Committee for Inland Fisheries of Africa 19: 168–175.Google Scholar
  54. Rohlf, F. J. & R. R. Sokal, 1995. Statistical tables, 3rd ed. W. H. Freeman & Co, New York: 199 pp.Google Scholar
  55. Rufli, H. & D. W. Chapman, 1976. Preliminary analysis of zooplankton sampling and estimates of fish abundance in Lake Tanganyika in October 1975. Lake Tanganyika fishery research and development project. United Nations Food and Agriculture Organisation FI:DP/URT/71/012/31: 14 pp.Google Scholar
  56. Sanyanga, R. A., C. Machena & N. Kautsky, 1995. Abundance and distribution of inshore fish in fished and protected areas in Lake Kariba, Zimbabwe. Hydrobiologia 306: 67–78.CrossRefGoogle Scholar
  57. Simpson, J. H., P. B. Tett, M. L. Argoteespinoza, A. Edwards, K. J. Jones & G. Savidge, 1982. Mixing and phytoplankton growth around an island in a stratified sea. Continental Shelf Research 1: 15–31.CrossRefGoogle Scholar
  58. Uthermöhl, H., 1931. Neue Wege in der quantitativen Erfassung des Planktonts. Verhandlungen der internationalen Vereinigung für theoretische und angewandte. Limnologie 5: 567–596.Google Scholar
  59. Verburg, P., R. E. Hecky & H. Kling, 2003. Ecological consequences of a century of warming in Lake Tanganyika. Science 301: 505–507.PubMedCrossRefGoogle Scholar
  60. Worm, B., E. B. Barbier, N. Beaumont, J. E. Duffy, C. Folke, B. S. Halpern, J. B. C. Jackson, H. K. Lotze, F. Micheli, S. R. Palumbi, E. Sala, K. A. Selkoe, J. J. Stachowicz & R. Watson, 2006. Impacts of biodiversity loss on ocean ecosystem services. Science 314(5800): 787–790.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • P.-D. Plisnier
    • 1
    Email author
  • H. Mgana
    • 2
  • I. Kimirei
    • 2
  • A. Chande
    • 2
  • L. Makasa
    • 3
  • J. Chimanga
    • 3
  • F. Zulu
    • 3
  • C. Cocquyt
    • 4
  • S. Horion
    • 5
  • N. Bergamino
    • 6
  • J. Naithani
    • 7
  • E. Deleersnijder
    • 8
  • L. André
    • 1
  • J.-P. Descy
    • 9
  • Y. Cornet
    • 5
  1. 1.Royal Museum for Central AfricaTervurenBelgium
  2. 2.Tanzania Fisheries Research InstituteKigomaTanzania
  3. 3.Department of FisheriesMpulunguZambia
  4. 4.National Botanic Garden of BelgiumMeiseBelgium
  5. 5.Unit of Geomatics, Department of GeographyUniversity of LiègeLiègeBelgium
  6. 6.Dip. di Scienze e Tecnologie Chimiche e dei BiosistemiUniversità degli Studi di SienaSienaItaly
  7. 7.Geo-Hydrodynamics and Environmental Research, Astrophysique, Géophysique et OcéanographieUniversity of LiègeLiègeBelgium
  8. 8.School of Engineering, Centre For Systems Engineering and Applied MechanicsUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  9. 9.Facultés Universitaires Notre-Dame de la PaixNamurBelgium

Personalised recommendations