Hydrobiologia

, Volume 657, Issue 1, pp 19–35 | Cite as

Biogeochemical implications of climate change for tropical rivers and floodplains

GLOBAL CHANGE AND RIVER ECOSYSTEMS

Abstract

Large rivers of the tropics, many of which have extensive floodplains and deltas, are important in the delivery of nutrients and sediments to marine environments, in methane emission to the atmosphere and in providing ecosystem services associated with their high biological productivity. These ecosystem functions entail biogeochemical processes that will be influenced by climate change. Evidence for recent climate-driven changes in tropical rivers exists, but remains equivocal. Model projections suggest substantial future climate-driven changes, but they also underscore the complex interactions that control landscape water balances, river discharges and biogeochemical processes. The most important changes are likely to involve: (1) aquatic thermal regimes, with implications for thermal optima of plants and animals, rates of microbially mediated biogeochemical transformations, density stratification of water bodies and dissolved oxygen depletion; (2) hydrological regimes of discharge and floodplain inundation, which determine the ecological structure and function of rivers and floodplains and the extent and seasonality of aquatic environments; and (3) freshwater–seawater gradients where rivers meet oceans, affecting the distribution of marine, brackish and freshwater environments and the biogeochemical processing as river water approaches the coastal zone. In all cases, climate change affects biogeochemical processes in concert with other drivers such as deforestation and other land use changes, dams and other hydrological alterations and water withdrawals. Furthermore, changes in riverine hydrology and biogeochemistry produce potential feedbacks to climate involving biogeochemical processes such as decomposition and methane emission. Future research should seek improved understanding of these changes, and long-term monitoring should be extended to shallow waters of wetlands and floodplains in addition to the larger lakes and rivers that are most studied.

Keywords

Global warming Temperature Wetlands Carbon dioxide Oxygen Biogeochemistry 

References

  1. Abrol, I. P., J. S. P. Yadav & F. I. Massoud, 1988. Salt-affected soils and their management. FAO Soils Bulletin 39. Food and Agriculture Organisation of the United Nations, Rome [available on internet at http://www.fao.org/docrep/x5871e/x5871e00.htm].
  2. Aerts, J. C. J. H., H. Renssen, P. J. Ward, H. de Moel, E. Odada, L. M. Bouwer & H. Goosse, 2006. Sensitivity of global river discharges under Holocene and future climatic conditions. Geophysical Research Letters 33. doi:10.1029/2006GL027493.
  3. Alcamo, J., M. Florke & M. Marker, 2007. Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences Journal – Journal des Sciences Hydrologiques 52: 247–275.CrossRefGoogle Scholar
  4. Ballhorn, U., F. Siegert, M. Mason & S. Liwin, 2009. Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. Proceedings of the National Academy of Sciences United States of America, published online before print November 25, 2009. doi:10.1073/pnas.0906457106.
  5. Barlow, J. & C. Peres, 2008. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society B – Biological Sciences 363: 1787–1794.CrossRefGoogle Scholar
  6. Bates, B. C., Z. W. Kundzewicz, S. Wu & J. P. Palutikof (eds), 2008. Climate Change and Water Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva.Google Scholar
  7. Bergamaschi, P., C. Frankenberg, J. F. Meirink, M. Krol, F. Dentener, T. Wagner, U. Platt, J. O. Kaplan, S. Korner, M. Heimann, E. J. Dlugokencky & A. Goede, 2007. Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations. Journal of Geophysical Research 112: D02304. doi:10.1029/2006JD007268.CrossRefGoogle Scholar
  8. Berry, J. & O. Björkman, 1980. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology 31: 491–543.CrossRefGoogle Scholar
  9. Betts, R. A., O. Boucher, M. Collins, P. M. Cox, P. D. Falloon, N. Gedney, D. L. Hemming, C. Huntingford, C. D. Jones, D. M. H. Sexton & M. Webb, 2007. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448: 1037–1041.CrossRefPubMedGoogle Scholar
  10. Bianchi, T. S., 2007. Biogeochemistry of Estuaries. Oxford University Press, Oxford.Google Scholar
  11. Bradley, R. S., M. Vuille, H. F. Diaz & W. Vergara, 2006. Threats to water supplies in the tropical Andes. Science 312: 1755–1756.CrossRefPubMedGoogle Scholar
  12. Cai, W. & T. Cowan, 2008. Evidence of impacts from rising temperature on inflows to the Murray-Darling Basin. Geophysical Research Letters 35: L07701. doi:10.1029/2008GL033390.CrossRefGoogle Scholar
  13. CCSP, 2008. Abrupt Climate Change. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research (Clark, P. U., A. J. Weaver (coordinating lead authors), E. Brook, E. R. Cook, T. L. Delworth & K. Steffen (chapter lead authors)). U.S. Geological Survey, Reston, VA: 459.Google Scholar
  14. Chaves, J., C. Neill, H. Elsenbeer, A. Krusche, S. Germer & S. Gouveia Neto, 2008. Land management impacts on runoff sources in small Amazon watersheds. Hydrological Processes 22: 1766–1775.CrossRefGoogle Scholar
  15. Clapcott, J. E. & S. E. Bunn, 2003. Can C4 plants contribute to the aquatic food webs of subtropical streams? Freshwater Biology 48: 1105–1116.CrossRefGoogle Scholar
  16. Coe, M. T., et al., 2009. The Influence of historical and potential future deforestation on the stream flow of the Amazon River – land surface processes and atmospheric feedbacks. Journal of Hydrology 369: 165–174.CrossRefGoogle Scholar
  17. Conrad, R., M. Close & M. Noll, 2009. Functional and structural response of the methanogenic microbial community in rice field soil to temperature change. Environmental Microbiology. doi:10.1111/j.1462-2920.2009.01909.x.Google Scholar
  18. Cook, E. R., P. J. Bartlein, N. Diffenbaugh, R. Seager, B. N. Shuman, R. S. Webb, J. W. Williams & C. Woodhouse, 2008. Hydrological variability and change. In Abrupt Climate Change. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. U.S. Geological Survey, Reston, VA: 143–257.Google Scholar
  19. Costa-Cabral, M. C., J. E. Richey, G. Goteti, D. P. Lettenmaier, C. Feldkötter & A. Snidvongs, 2007. Landscape structure and use, climate, and water movement in the Mekong River basin. Hydrological Processes 22: 1731–1746.CrossRefGoogle Scholar
  20. Cotrim da Cunha, L., E. T. Buitenhuis, C. Le Quéré, X. Giraud & W. Ludwig, 2008. Potential impact of changes in river nutrient supply on global ocean biogeochemistry. Global Biogeochemical Cycles 21: GB 407. doi:10.1029/2006GB002718.Google Scholar
  21. Craft, C., 2007. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S tidal marshes. Limnology and Oceanography 52: 1220–1230.CrossRefGoogle Scholar
  22. Dai, A., K. E. Trenberth & T. Qian, 2004. A global dataset of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology 5: 1117–1130.CrossRefGoogle Scholar
  23. Davidson, E. A. & I. A. Janssens, 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165–173.CrossRefPubMedGoogle Scholar
  24. Day, J. W., R. R. Christian, D. M. Boesch, A. Yáñez-Arancibia, J. Morris, R. R. Twilley, L. Naylor, L. Schaffner & C. Stevenson, 2008. Consequences of climate change on the ecogeomorphology of coastal wetlands. Estuaries and Coasts 31: 477–491.CrossRefGoogle Scholar
  25. de Melo, S. & V. L. M. Huszar, 2000. Phytoplankton in an Amazonian flood-plain lake (Lago Batata, Brasil): diel variation and species strategies. Journal of Plankton Research 22: 63–76.CrossRefGoogle Scholar
  26. Denman, K. L., G. Brasseur, A. Chidthaisong, P. Ciais, P. M. Cox, R. E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S. Ramachandran, P. L. da Silva Dias, S. C. Wofsy & X. Zhang, 2007. Couplings between changes in the climate system and biogeochemistry. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.Google Scholar
  27. Deutsch, C. A., J. J. Tewksbury, R. B. Huey, K. S. Sheldon, C. K. Ghalambor, D. C. Haak & P. R. Martin, 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences 105: 6668–6672.CrossRefGoogle Scholar
  28. Dillon, R. T. Jr., 2000. The Ecology of Freshwater Molluscs. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  29. Downing, J. A., M. McClain, R. Twilley, J. M. Melack, J. Elser, N. N. Rabalais, W. M. Lewis Jr., R. E. Turner, J. Corredor, D. Soto, A. Yañez-Arancibia, J. Kopaska & R. W. Howarth, 1999. The impact of accelerating land-use change on the N-cycle of tropical aquatic ecosystems: current conditions and projected changes. Biogeochemistry 46: 109–148.Google Scholar
  30. Ericson, J. P., C. J. Vörösmarty, S. L. Dingman, L. G. Ward & M. Meybeck, 2006. Effective sea-level rise and deltas: causes of change and human dimension implications. Global and Planetary Change 50: 63–82.CrossRefGoogle Scholar
  31. Fenchel, T., 2005. Respiration in aquatic protists. In del Giorgio, P. A. & P. J. B. le Williams (eds), Respiration in Aquatic Ecosystems. Oxford University Press, Oxford: 47–56.CrossRefGoogle Scholar
  32. Fey, A., K. J. Chin & R. Conrad, 2001. Thermophilic methanogens in rice field soil. Environmental Microbiology 3: 295–303.CrossRefPubMedGoogle Scholar
  33. Fey, A., P. Claus & R. Conrad, 2004. Temporal change of 13C-isotope signatures and methanogenic pathways in rice field soil incubated anoxically at different temperatures. Geochimica et Cosmochimica Acta 68: 293–306.CrossRefGoogle Scholar
  34. Fitzpatrick, R. & P. Shand, 2008. Inland acid sulfate soils: Overview and conceptual models. In Fitzpatrick, R. & P. Shand (eds), Inland Acid Sulfate Soil Systems Across Australia. CRC LEME Open File Report No. 249 (Thematic Volume). CRC LEME, Perth, Australia: 6–74 [available on internet at http://www.clw.csiro.au/acidsulfatesoils/documents/ass-book/Ch1-Inland-ASS.pdf].
  35. Foley, J. A., A. Botta, M. T. Coe & M. H. Costa, 2002. El Niño-Southern Oscillation and the climate, ecosystems and rivers of Amazonia. Global Biogeochemical Cycles 16(4): Art. No. 1132.Google Scholar
  36. Gedney, N., P. M. Cox & C. Huntingford, 2004. Climate feedback from wetland methane emissions. Geophysical Research Letters 31: L20503. doi:10.1029/2004GL020919.CrossRefGoogle Scholar
  37. Gedney, N., P. M. Cox, R. A. Betts, O. Boucher, C. Huntingford & P. A. Stott, 2006. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439: 835–838. doi:10.1038/nature04504.CrossRefPubMedGoogle Scholar
  38. Gerten, D., S. Rost, W. Von Bloh & W. Lucht, 2008. Causes of change in 20th century global river discharge. Geophysical Research Letters 35: L20405. doi:10.1029/2008GL035258.CrossRefGoogle Scholar
  39. Gibson, D. J., 2009. Grasses and Grassland Ecology. Oxford University Press, Oxford.Google Scholar
  40. Goudie, A. S., 2006. Global warming and fluvial geomorphology. Geomorphology 79: 384–394.CrossRefGoogle Scholar
  41. Hamilton, S. K., 2008a. Flood plains. In Likens, G. E. (ed.), Encyclopedia of Inland Waters. Elsevier, Oxford.Google Scholar
  42. Hamilton, S. K., 2008b. Floodplain wetlands of large river systems. In Likens, G. E. (ed.), Encyclopedia of Inland Waters. Elsevier, Oxford.Google Scholar
  43. Hamilton, S. K. & W. M. Lewis Jr., 1990. Basin morphology in relation to chemical and ecological characteristics of lakes on the Orinoco River floodplain, Venezuela. Archiv für Hydrobiologie 119: 393–425.Google Scholar
  44. Hamilton, S. K., S. J. Sippel, W. M. Lewis Jr. & J. F. Saunders III, 1990. Zooplankton abundance and evidence for its reduction by macrophyte mats in two Orinoco floodplain lakes. Journal of Plankton Research 12: 345–363.CrossRefGoogle Scholar
  45. Hamilton, S. K., W. M. Lewis Jr. & S. J. Sippel, 1992. Energy sources for aquatic animals on the Orinoco River floodplain: Evidence from stable isotopes. Oecologia 89: 324–330.Google Scholar
  46. Hamilton, S. K., S. J. Sippel & J. M. Melack, 1995. Oxygen depletion and carbon dioxide and methane production in waters of the Pantanal wetland of Brazil. Biogeochemistry 30: 115–141.CrossRefGoogle Scholar
  47. Hamilton, S. K., S. J. Sippel & J. M. Melack, 1996. Inundation patterns in the Pantanal wetland of South America determined from passive microwave remote sensing. Archiv für Hydrobiologie 137: 1–23.Google Scholar
  48. Hamilton, S. K., S. J. Sippel, D. F. Calheiros & J. M. Melack, 1997. An anoxic event and other biogeochemical effects of the Pantanal wetland on the Paraguay River. Limnology and Oceanography 42: 257–272.CrossRefGoogle Scholar
  49. Hamilton, S. K., S. J. Sippel & J. M. Melack, 2002. Comparison of inundation patterns in South American floodplains. Journal of Geophysical Research 107(D20): Art. No. 8038. Available in electronic form; doi 10.1029/2000JD000306.
  50. Hamilton, S. K., S. E. Bunn, M. Thoms & J. C. Marshall, 2005. Persistence of aquatic refugia between flow pulses in a dryland river system (Cooper Creek, Australia). Limnology and Oceanography 50: 743–754.CrossRefGoogle Scholar
  51. Hamilton, S. K., D. A. Bruesewitz, G. P. Horst & O. Sarnelle, 2009. Biogenic calcite-phosphorus precipitation as a negative feedback to lake eutrophication. Canadian Journal of Fisheries and Aquatic Sciences 66: 321–342.CrossRefGoogle Scholar
  52. Hansen, J. E., 2007. Scientific reticence and sea level rise. Environmental Research Letters 2. doi:10.1088/1748-9326/2/2/024002.
  53. Hart, B. T. & I. D. McKelvie, 1986. Chemical limnology in Australia. In De Decker, P. & W. D. Williams (eds), Limnology in Australia. CSIRO, Melbourne & Dr. W. Junk Publishers, Dordrecht.Google Scholar
  54. Heckman, C. W., 1979. Rice Field Ecology in Northeastern Thailand. In Illies, J. (ed.), Monographiae Biologicae, Vol. 34. Dr. W. Junk Publishers, The Hague.Google Scholar
  55. Hobbins, M. T., J. A. Ramírez & T. C. Brown, 2004. Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: paradoxical or complementary? Geophysical Research Letters 31: L13503. doi:10.1029/2004GL019846.CrossRefGoogle Scholar
  56. Hobbins, M. T., A. Dai, M. L. Roderick & G. D. Farquhar, 2008. Revisiting the parameterization of potential evaporation as a driver of long-term water balance trends. Geophysical Research Letters 35: L12403. doi:10.1029/2008GL033840.CrossRefGoogle Scholar
  57. Horton, R., C. Herweijer, C. Rosenzweig, J. Liu, V. Gornitz & A. C. Ruane, 2008. Sea level rise projections for current generation CGCMs based on the semi-empirical method. Geophysical Research Letters 35: L02715. doi:10.1029/2007GL032486.CrossRefGoogle Scholar
  58. IPCC, 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Core Writing Team, R. K. Pachauri & A. Reisinger (eds)). IPCC, Geneva.Google Scholar
  59. Jennerjahn, T. C., B. A. Knoppers, W. F. L. Souza, G. J. Brunskill, I. L. Silva & S. Adi, 2006. Factors controlling dissolved silica in tropical rivers. In Ittekkot, V., D. Unger, C. Humborg & N. Tac An (eds), The Silicon Cycle: Human Perturbations and Impacts on Aquatic Systems. Island Press, Washington, DC: 29–52.Google Scholar
  60. Junk, W. J. (ed.), 1997. The Central Amazon Floodplain: Ecology of a Pulsing System. Ecological Studies 126. Springer, New York.Google Scholar
  61. Kelts, K. & K. J. Hsü, 1978. Freshwater carbonate sedimentation. In Lerman, A. (ed.), Lakes: Chemistry, Geology, Physics. Springer-Verlag, New York: 292–323.Google Scholar
  62. Kempe, S., 1982. Long-term records of CO2 pressure fluctuations in fresh waters. SCOPE/UNEP Sonderband 52: 91–332.Google Scholar
  63. Khan, S., A. R. Ganguly, S. Bandyopadhyay, S. Saigal, D. J. Erickson III, V. Protopopescu & G. Ostrouchov, 2006. Nonlinear statistics reveals stronger ties between ENSO and the tropical hydrological cycle. Geophysical Research Letters 33: L24402. doi:10.1029/2006GL027941.CrossRefGoogle Scholar
  64. Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. Cambridge University Press, Cambridge: 509.CrossRefGoogle Scholar
  65. Knighton, A. D., K. Mills & C. Woodroffe, 1991. Tidal-creek extension and saltwater intrusion in northern Australia. Geology 19: 831–834.CrossRefGoogle Scholar
  66. Kump, L. R., S. L. Brantley & M. A. Arthur, 2000. Chemical weathering, atmospheric CO2, and climate. Annual Reviews of Earth and Planetary Science 28: 611–667.CrossRefGoogle Scholar
  67. Kundzewicz, Z. W., L. J. Mata, N. Arnell, P. Döll, P. Kabat, B. Jiménez, K. Miller, T. Oki, Z. Şen & I. Shiklomanov, 2008. The implications of projected climate change for freshwater resources and their management. Hydrological Sciences Journal – Journal des Sciences Hydrologiques 53: 3–10.Google Scholar
  68. Labat, D., Y. Godderis, J. L. Probst & J. L. Guyot, 2004. Evidence for global runoff increase related to climate warming. Advances in Water Resources 27: 631–642.CrossRefGoogle Scholar
  69. Lewis, W. M. Jr., 1987. Tropical limnology. Annual Review of Ecology and Systematics 18: 159–184.CrossRefGoogle Scholar
  70. Lewis, W. M. Jr., S. K. Hamilton, M. A. Lasi, M. Rodríguez & J. F. Saunders III, 2000. Ecological determinism on the Orinoco floodplain. Bioscience 50: 681–692.CrossRefGoogle Scholar
  71. Li, K. Y., M. T. Coe, N. Ramankutty & R. De Jong, 2007. Modeling the hydrological impact of land-use change in West Africa. Journal of Hydrology 337: 258–268.CrossRefGoogle Scholar
  72. Marengo, J. A., C. A. Nobre, J. Tomasella, M. D. Oyama, G. S. de Oliveira, R. de Oliveira, H. Camargo, L. M. Alves & I. F. Brown, 2008. The drought of Amazonia in 2005. Journal of Climatology 21: 495–516. doi:10.1175/2007JCLI1600.1.CrossRefGoogle Scholar
  73. Mauro, J. B. N., J. R. D. Guimarães & R. Melamed, 1999. Mercury methylation in a tropical macrophyte: influence of abiotic parameters. Applied Organometallic Chemistry 13: 631–636.CrossRefGoogle Scholar
  74. Meehl, G. A., T. F. Stocker, W. D. Collins, P. Friedlingstein, A. T. Gaye, J. M. Gregory, A. Kitoh, R. Knutti, J. M. Murphy, A. Noda, S. C. B. Raper, I. G. Watterson, A. J. Weaver & Z.-C. Zhao, 2007. Global climate projections. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.Google Scholar
  75. Melack, J. M., L. L. Hess, M. Gastil, B. R. Forsberg, S. K. Hamilton, I. B. T. Lima & E. M. L. M. Novo, 2004. Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Global Change Biology 10: 530–544.CrossRefGoogle Scholar
  76. Mertes, L. A. K., 2000. Inundation hydrology. In Wohl, E. E. (ed.), Inland Flood Hazards: Human, Riparian, and Aquatic Communities. Cambridge University Press, Cambridge, UK: 145–166.CrossRefGoogle Scholar
  77. Milliman, J. D., K. L. Farnsworth, P. D. Jones, K. H. Lu & L. C. Smith, 2008. Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000. Global and Planetary Change 62(2008): 187–194.CrossRefGoogle Scholar
  78. Milly, P. C. D., K. A. Dunne & V. Vecchia, 2005. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438: 347–350.CrossRefPubMedGoogle Scholar
  79. Neill, C., H. Elsenbeer, A. V. Krutsche, J. Lehmann, D. Markewitz & R. O. Figueiredo, 2006. Hydrological and biogeochemical processes in a changing Amazon: results from small watershed studies and the large-scale biosphere-atmosphere experiment. Hydrological Processes 20: 2467–2476.CrossRefGoogle Scholar
  80. Nijssen, B., G. M. O’Donnell, A. F. Hamlet & D. P. Lettenmaier, 2001. Hydrologic sensitivity of global rivers to climate change. Climatic Change 50: 143–175.CrossRefGoogle Scholar
  81. Nilsson, C., C. A. Reidy, M. Dynesius & C. Revenga, 2005. Fragmentation and flow regulation of the world’s large river systems. Science 308: 405–408.CrossRefPubMedGoogle Scholar
  82. Nohara, D., A. Kitoh, M. Hosaka & T. Oki, 2006. Impact of climate change on river discharge projected by multimodel ensemble. Journal of Hydrometeorology 7: 1076–1089.CrossRefGoogle Scholar
  83. Oliveira, M. D., S. K. Hamilton & C. M. Jacobi, 2010. Forecasting the expansion of the invasive golden mussel Limnoperna fortunei in Brazilian and North American rivers based on its occurrence in the Paraguay River and Pantanal wetland of Brazil. Aquatic Invasions 5(1). doi:10.3391/ai.2010.5.1.
  84. Palmer, M. A., C. A. Reidy Liermann, C. Nilsson, M. Flörke, J. Alcamo, P. S. Lake & N. Bond, 2008. Climate change and the world’s river basins: anticipating management options. Frontiers in Ecology and the Environment 6. doi:10.1890/060148.
  85. Peel, M. C. & T. A. McMahon, 2006. A quality-controlled global runoff data set. Nature 444: E14.CrossRefPubMedGoogle Scholar
  86. Piao, S., P. Friedlingstein, P. Ciais, N. de Noblet-Ducoudre, D. Labat & S. Zaehle, 2007. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proceedings of the National Academy of Sciences 104: 15242–15247.CrossRefGoogle Scholar
  87. Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime. Bioscience 47: 769–784.CrossRefGoogle Scholar
  88. Powell, B. & M. Martens, 2004. A review of acid sulfate soil impacts, actions and policies that impact on water quality in Great Barrier Reef catchments, including a case study on remediation at East Trinity. Marine Pollution Bulletin 51: 149–164.CrossRefPubMedGoogle Scholar
  89. Ramberg, L., P. Wolski & M. Krah, 2006. Water balance and infiltration in a seasonal floodplain in the Okavango Delta, Botswana. Wetlands 26: 677–690.CrossRefGoogle Scholar
  90. Raven, J. A., 2005. Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide. Policy Document 12/05. The Royal Society, London, UK.Google Scholar
  91. Raymond, P. A., N.-H. Oh, R. E. Turner & W. Broussard, 2008. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451: 449–452.CrossRefPubMedGoogle Scholar
  92. Roden, E. E. & R. G. Wetzel, 2002. Competition between Fe(III)-reducing and methanogenic bacteria for acetate in iron-rich freshwater sediments. Microbial Ecology 45: 252–258.CrossRefGoogle Scholar
  93. Roehm, C. L., 2005. Respiration in wetland ecosystems. In del Giorgio, P. A. & P. J. B. le Williams (eds), Respiration in Aquatic Ecosystems. Oxford University Press, Oxford: 83–102.CrossRefGoogle Scholar
  94. Sheffield, J. & E. F. Wood, 2008. Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. Journal of Climate 21: 432–453.CrossRefGoogle Scholar
  95. Shindell, D. T., B. P. Walter & G. Faluvegi, 2004. Impacts of climate change on methane emissions from wetlands. Geophysical Research Letters 31: L21202. doi:10.1029/2004GL021009.CrossRefGoogle Scholar
  96. Solomon, S., G.-K. Plattner, R. Knutti & P. Friedlingstein, 2009. Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences 106: 1704–1709.CrossRefGoogle Scholar
  97. Steffen, K., P. U. Clark, J. G. Cogley, D. Holland, S. Marshall, E. Rignot & R. Thomas, 2008. Rapid changes in glaciers and ice sheets and their impacts on sea level. In Abrupt Climate Change. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. U.S. Geological Survey, Reston, VA: 60–142.Google Scholar
  98. Strayer, D. L., N. F. Caraco, J. J. Cole, S. Findlay & M. L. Pace, 1999. Transformation of freshwater ecosystems by bivalves: a case study of zebra mussels in the Hudson River. Bioscience 49: 19–27.CrossRefGoogle Scholar
  99. Subramaniam, A., P. L. Yager, E. J. Carpenter, C. Mahaffey, K. Björkman, S. Cooley, A. B. Kustka, J. P. Montoya, S. A. Sañudo-Wilhelmy, R. Shipe & D. G. Capone, 2008. Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean. Proceedings of the National Academy of Sciences 105: 10460–10465.CrossRefGoogle Scholar
  100. Subramanian, V., V. Ittekot, D. Unger & N. Madhavan, 2006. Silicate weathering in south Asian tropical river basins. In Ittekkot, V., D. Unger, C. Humborg & N. Tac An (eds), The Silicon Cycle: Human Perturbations and Impacts on Aquatic Systems. Island Press, Washington, DC: 3–12.Google Scholar
  101. Syvitsky, J. P. M., C. J. Vörösmarty, A. J. Kettner & P. Green, 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308: 376–380.CrossRefGoogle Scholar
  102. Talling, J. F. & J. Lemoalle, 1998. Ecological dynamics of tropical inland waters. Cambridge University Press, Cambridge, UK.Google Scholar
  103. Timms, B. V., 1999. Local runoff, Paroo floods and water extraction impacts on the wetlands of Currawinya National Park. In Kingsford, R. T. (ed.), A Free-Flowing River: The Ecology of the Paroo River. New South Wales National Parks and Wildlife Service, Huntsville, NSW, Australia: 51–66.Google Scholar
  104. Vörösmarty, C. J., K. Sharma, B. Fekete, A. H. Copeland, J. Holden, J. Marble & J. A. Lough, 1997. The storage and aging of continental runoff in large reservoir systems of the world. Ambio 26: 210–219.Google Scholar
  105. Walling, D. E., 2006. Human impact on land-ocean sediment transfer by the world’s rivers. Geomorphology 79: 192–216.CrossRefGoogle Scholar
  106. Wassman, R., N. X. Hien, C. T. Hoanh & T. P. Tuong, 2004. Sea level rise affecting the Vietnamese Mekong Delta: Water elevation in the flood season and implications for rice production. Climatic Change 66: 89–107. doi:10.1023/B:CLIM.0000043144.69736.b7.CrossRefGoogle Scholar
  107. Weber, K. A., L. A. Achenbach & J. D. Coates, 2006. Microroganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews. Microbiology 4: 752–764.CrossRefPubMedGoogle Scholar
  108. Webster, P. J., G. J. Holland, J. A. Curry & H.-R. Chang, 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309: 1844–1846.CrossRefPubMedGoogle Scholar
  109. Welcomme, R. L., 1985. River Fisheries, FAO Fisheries Technical Paper 262. United Nations Food and Agricultural Organisation, Rome.Google Scholar
  110. White, A. F. & A. E. Blum, 1995. Effects of climate on chemical weathering rates in watersheds. Geochimica et Cosmochimica Acta 59: 1729–1747.CrossRefGoogle Scholar
  111. Wu, X. L., M. W. Friedrich & R. Conrad, 2006. Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils. Environmental Microbiology 8: 394–404.CrossRefPubMedGoogle Scholar
  112. WWF, 2005. An Overview of Glaciers, Glacier Retreat and Subsequent Impacts in Nepal, India and China. S. C. Rai (coordinator), World Wide Fund for Nature (WWF) Nepal Program [available on internet at http://assets.panda.org/downloads/himalayaglaciersreport2005.pdf].
  113. Yao, H. & R. Conrad, 2000. Effect of temperature on reduction of iron and production of carbon dioxide and methane in anoxic wetland rice soils. Biology and Fertility of Soils 32: 135–141.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.W.K. Kellogg Biological StationMichigan State UniversityHickory CornersUSA
  2. 2.Department of ZoologyMichigan State UniversityHickory CornersUSA

Personalised recommendations