, Volume 650, Issue 1, pp 15–26 | Cite as

Discrete prey availability promotes foraging segregation and early divergence in Arctic charr, Salvelinus alpinus

  • Mónica V. Garduño-Paz
  • Colin E. Adams


Many animal species show individual foraging specialisms when potential prey requires prey-specific foraging strategies. Arctic charr are often found as benthic (macroinvertebrate) or pelagic (plankton) foraging specialists. Here, we tested specifically if given a choice of prey with different characteristics individuals would specialise in a single prey type and if individuals would chose prey based on their expressed trophic morphology, in a laboratory experiment and in a field observation. When offered a choice of benthic and pelagic prey most individuals (73%) showed that 100% fidelity to a single foraging source. Naïve individuals (not previously exposed to natural prey) with more robust head and mouth shape were more likely to forage on a benthic prey source (chironomids). In contrast, individuals with a more fusiform body, larger eye, but more slender head shape were more likely to specialise on pelagic prey (Artemia). Field observations of a natural population of Arctic charr from Loch Doine identified specialists foraging on either plankton or macrobenthos (on the basis of stomach contents) and some generalists. Morphological analysis showed that significant differences in shape reflecting recent foraging history. These results support the hypothesis that the availability of discrete, different prey types results in discrete foraging specialisms which in turn may result in the expression of discrete alternative phenotypes through subsequent plastic ontogenetic process. We conclude that this provides a partial explanation for why ecologically driven evolution processes are particularly prevalent in fishes from post-glacial lake systems.


Foraging specialism Alternative prey Trophic phenotype Discrete prey 



We thank the staff of the Scottish Centre for Ecology and the Natural Environment for technical support. M. V. G-P. was supported by the Autonomous University of the State of México (UAEMéx) and the Mexican Council for Science and Technology (CONACYT).


  1. Adams, C. E. & F. A. Huntingford, 2002a. The functional significance of inherited differences in feeding morphology in a sympatric polymorphic population of Arctic charr. Evolutionary Ecology 16: 15–25.CrossRefGoogle Scholar
  2. Adams, C. E. & F. A. Huntingford, 2002b. Inherited differences in head allometry in polymorphic Arctic charr from Loch Rannoch, Scotland. Journal of Fish Biology 60: 515–520.CrossRefGoogle Scholar
  3. Adams, C. E., D. Fraser, F. A. Huntingford, R. B. Greer, C. M. Askew & A. F. Walker, 1998. Trophic polymorphism amongst Arctic charr from Loch Rannoch, Scotland. Journal of Fish Biology 52: 1259–1271.CrossRefGoogle Scholar
  4. Adams, C. E., C. Woltering & G. Alexander, 2003. Epigenetic regulation of trophic morphology through feeding behaviour in Arctic charr, Salvelinus alpinus. Journal of Fish Biology 78: 43–49.Google Scholar
  5. Adams, C. E., J. H. Hamilton, I. McCarthy, J. W. Alastair, A. Grant, G. Alexander, S. Waldron, S. S. Snorrason, M. Ferguson & S. Skúlason, 2006. Does breeding site fidelity drive phenotypic and genetic sub-structuring of a population of Arctic charr? Evolutionary Ecology 20: 11–26.CrossRefGoogle Scholar
  6. Alekseyev, S. S., V. P. Samusenok, A. N. Matveev & M. Y. Pichugin, 2002. Diversification, sympatric speciation, and trophic polymorphism of Arctic charr, Salvelinus alpinus complex, in Transbaikalia. Journal of Fish Biology 64: 97–114.CrossRefGoogle Scholar
  7. Alexander, G. D. & C. E. Adams, 2000. The phenotypic diversity of Arctic charr, Salvelinus alpinus, (Salmonidae) in Scotland and Ireland. Aqua Journal of Ichthyology and Aquatic Biology 4: 77–88.Google Scholar
  8. Amundsen, P. A., R. Knudsen & A. Klemetsen, 2008. Seasonal and ontogenetic variations in resource use by two sympatric Arctic charr morphs. Environmental Biology of Fishes 83: 45–55.CrossRefGoogle Scholar
  9. Baker, J. A., W. A. Cresko, S. A. Foster & D. C. Heins, 2005. Life-history differentiation of benthic and limnetic ecotypes in a polytypic population of three-spine stickleback (Gasterosteus aculeatus). Evolutionary Ecology Research 7: 121–131.Google Scholar
  10. Baumgartner, J. V., 1992. Spatial variation of morphology in a freshwater population of the three-spine stickleback, Gasterosteus aculeatus. Canadian Journal of Zoology-Revue Canadienne de Zoologie 70: 1140–1148.CrossRefGoogle Scholar
  11. Bell, M. A. & S. A. Foster, 1994. The Evolutionary Biology of the Three-Spine Stickleback. Oxford University Press, New York.Google Scholar
  12. Bolnick, D., R. Svanbäck, J. A. Fordyce, L. H. Yang, J. M. Davis, C. D. Husley & M. L. Forister, 2003. The Ecology of Individuals: incidence and Implications of Individual Specialization. American Naturalist 161: 1–28.CrossRefPubMedGoogle Scholar
  13. Cresko, W. A. & J. A. Baker, 1996. Two morphotypes of lacustrine three-spine stickleback, Gasterosteus aculeatus, in Benka Lake, Alaska. Environmental Biology of Fishes 45: 343–350.CrossRefGoogle Scholar
  14. Dieckmann, U. & M. Doebeli, 1999. On the origin of the species by sympatric speciation. Nature 400: 354–357.CrossRefPubMedGoogle Scholar
  15. Foster, S. A., J. A. Baker & M. A. Bell, 1992. Phenotypic integration of life history and morphology: an example from three-spined stickleback, Gasterosteus aculeatus L. Journal of Fish Biology 41: 21–35.CrossRefGoogle Scholar
  16. Fraser, D., C. E. Adams & F. A. Huntingford, 1998. Trophic polymorphism among Arctic charr Salvelinus alpinus L., from Loch Ericht, Scotland. Ecology of Freshwater Fish 7: 184–191.CrossRefGoogle Scholar
  17. Fraser, D., F. A. Huntingford & C. E. Adams, 2008. Foraging specialisms, prey size and life-history patterns: a test of predictions using sympatric polymorphic Arctic charr (Salvelinus alpinus). Ecology of Freshwater Fish 17: 1–9.CrossRefGoogle Scholar
  18. Hegrenes, S., 2001. Diet-induced phenotypic plasticity of feeding morphology in the orangespotted sunfish, Lepomis humilis. Ecology of Freshwater Fish 10: 35–42.CrossRefGoogle Scholar
  19. Hjelm, J., R. Svanback, P. Bystrom, L. Persson & E. Wahlstrom, 2001. Diet-dependent body morphology and ontogenetic reaction norms in Eurasian perch. Oikos 95: 311–323.CrossRefGoogle Scholar
  20. Hjelm, J., G. H. van de Weerd & F. A. Sibbing, 2003. Functional link between foraging performance, functional morphology, and diet shift in roach (Rutilus rutilus). Canadian Journal of Fisheries and Aquatic Sciences 60: 700–709.CrossRefGoogle Scholar
  21. Januszkiewicz, A. J. & B. W. Robinson, 2007. Divergent walleye (Sander vitreus) mediated inducible defenses in the centrarchid pumpkinseed sunfish (Lepomis gibbosus). Journal of Fish Biology 90: 25–36.Google Scholar
  22. Kahilainen, K. & K. Ostbye, 2006. Morphological differentiation and resource polymorphism in three sympatric whitefish Coregonus lavaretus (L.) forms in a subarctic lake. Journal of Fish Biology 68: 63–79.CrossRefGoogle Scholar
  23. Kahilainen, K. K., T. Malinen, A. Tuomaala, E. Alajaervi, A. Tolonen & H. Lehtonen, 2007. Empirical evaluation of phenotype-environment correlation and trait utility with allopatric and sympatric whitefish. Coregonus lavaretus (L.), populations in subarctic lakes. Journal of Fish Biology 92: 561–572.Google Scholar
  24. Ke, Z. X., P. Xie & L. G. Guo, 2008. Phenotypic plasticity in gut length in the planktivorous filter-feeding silver carp (Hypophthalmichthys molitrix). Scientific World Journal 8: 169–175.PubMedGoogle Scholar
  25. Klemetsen, A., J. M. Elliott, R. Knudsen & P. Sorensen, 2002. Evidence for genetic differences in the offspring of two sympatric morphs of Arctic charr. Journal of Fish Biology 60: 933–950.CrossRefGoogle Scholar
  26. Klemetsen, A., R. Knudsen, F. J. Staldvik & P. A. Amundsen, 2003. Habitat, diet and food assimilation of Arctic charr under the winter ice in two subarctic lakes. Journal of Fish Biology 62: 1082–1098.CrossRefGoogle Scholar
  27. Knudsen, R., A. Klemetsen, P. A. Amundsen & B. Hermansen, 2006. Incipient speciation through niche expansion: an example from the Arctic charr in a subarctic lake. Proceedings of the Royal Society B-Biological Sciences 273: 2291–2298.CrossRefGoogle Scholar
  28. Kristjansson, B., S. Skúlason & D. L. Noakes, 2002. Morphological segregation of Icelandic threespine stickleback (Gasterosteus aculeatus L). Journal of Fish Biology 76: 247–257.Google Scholar
  29. Larson, G. L. & C. D. McIntire, 1993. Food-habits of different phenotypes of threespine stickleback in Paxton Lake, British Columbia. Transactions of the American Fisheries Society 122: 543–549.CrossRefGoogle Scholar
  30. Lu, G. Q. & L. Bernatchez, 1999. Correlated trophic specialization and genetic divergence in sympatric lake whitefish ecotypes (Coregonus clupeaformis): support for the ecological speciation hypothesis. Evolution 53: 1491–1505.CrossRefGoogle Scholar
  31. Maerz, J. C., E. M. Myers & D. C. Adams, 2006. Trophic polymorphism in a terrestrial salamander. Evolutionary Ecology Research 8: 23–35.Google Scholar
  32. Maheswaran, G. & A. Rahmani, 2002. Foraging behaviour and feeding success of the black-necked stork (Ephippiorhynchus asiaticus) in Dudwa National Park, Uttar Pradesh, India. Journal of Zoology 258: 189–195.CrossRefGoogle Scholar
  33. Malaquias, M. A. E., E. Berecibar & D. G. Reid, 2009. Reassessment of the trophic position of Bullidae (Gastropoda: Cephalaspidea) and the importance of diet in the evolution of cephalaspidean gastropods. Journal of Zoology 277: 88–97.CrossRefGoogle Scholar
  34. Malmquist, H. J., S. S. Snorrason, S. Skulason, B. Jonsson, O. T. Sandlund & P. M. Jonasson, 1992. Diet differentiation in polymorphic Arctic charr in Thingvallavatn, Iceland. Journal of Animal Ecology 61: 21–35.CrossRefGoogle Scholar
  35. McPhail, J., 1992. Ecology and evolution of sympatric sticklebacks (Gasterosteus): evidence for a species-pair in Paxton Lake, Texada Island, British Columbia. Canadian Journal of Zoology-Revue Canadienne de Zoologie 70: 361–369.CrossRefGoogle Scholar
  36. Michaud, W. K., M. Power & M. T. Kinnison, 2008. Trophically mediated divergence of Arctic charr (Salvelinus alpinus L.) populations in contemporary time. Evolutionary Ecology Research 10: 1051–1066.Google Scholar
  37. Mittelbach, G. C., C. W. Osenberg & P. C. Wainwright, 1999. Variation in feeding morphology between pumpkinseed populations: phenotypic plasticity or evolution? Evolutionary Ecology Research 1: 111–128.Google Scholar
  38. Olsson, J., M. Quevedo, C. Colson & R. Svanback, 2007. Gut length plasticity in perch: into the bowels of resource polymorphisms. Journal of Fish Biology 90: 517–523.Google Scholar
  39. Ostbye, K., T. F. Naesje, L. Bernatchez, O. T. Sandlund & K. Hindar, 2005. Morphological divergence and origin of sympatric populations of European whitefish (Coregonus lavaretus L.) in Lake Femund, Norway. Journal of Evolutionary Biology 18: 683–702.CrossRefPubMedGoogle Scholar
  40. Queral-Regil, A. & R. B. King, 1998. Evidence for phenotypic plasticity in snake body size and relative head dimensions in response to amount and size of prey. Copeia 1998: 423–429.CrossRefGoogle Scholar
  41. Reilly, S. M., G. V. Lauder & J. P. Collins, 1992. Performance consequences of a trophic polymorphism: feeding behavior in typical and cannibal phenotypes of Ambystoma tigrinum. Copeia 1992: 672–679.CrossRefGoogle Scholar
  42. Robinson, B. W. & K. J. Parsons, 2002. Changing times, spaces, and faces: tests and implications of adaptive morphological plasticity in the fishes of northern postglacial lakes. Canadian Journal of Fisheries and Aquatic Sciences 59: 1819–1833.CrossRefGoogle Scholar
  43. Robinson, B. W. & D. S. Wilson, 1994. Character release and displacement in fishes: a neglected literature. American Naturalist 144: 596–627.CrossRefGoogle Scholar
  44. Rohlf, F. J., 2006. TpsDig, version 2.10. Department of Ecology and Evolution, State University of New York at Stony Brook. Available at
  45. Rohlf, F. J., 2007, tpsRelw, version 1.45. Department of Ecology and Evolution, State University of New York at Stony Brook. Available at
  46. Rohlf, F. J. & D. E. Slice, 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39: 40–59.CrossRefGoogle Scholar
  47. Ruehl, C. B. & T. J. Dewitt, 2007. Trophic plasticity and foraging performance in red drum, Sciaenops ocellatus (Linnaeus). Journal of Experimental Marine Biology and Ecology 349: 284–294.CrossRefGoogle Scholar
  48. Schluter, D., 1996. Ecological speciation in postglacial fishes. Philosophical Transactions of the Royal Society of London, Series B 351: 807–814.CrossRefGoogle Scholar
  49. Schluter, D., 2001. Ecology and the origin of species. Trends in Ecology & Evolution 16: 372–380.CrossRefGoogle Scholar
  50. Schmidt, B. R., N. Ramer & J. Van Buskirk, 2006. A trophic polymorphism induced by both predators and prey. Evolutionary Ecology Research 8: 1301–1309.Google Scholar
  51. Skúlason, S. & T. B. Smith, 1995. Resource polymorphisms in vertebrates. Trends in Ecology & Evolution 10: 366–370.CrossRefGoogle Scholar
  52. Skúlason, S., D. L. G. Noakes & S. S. Snorrason, 1989. Ontogeny of trophic morphology in 4 sympatric morphs of Arctic charr Salvelinus alpinus in Thingvallavatn, Iceland. Journal of Fish Biology 38: 281–301.Google Scholar
  53. Skúlason, S., S. S. Snorrason & B. Jónsson, 1999. Sympatrics morphs, populations and speciation in freshwater fish with emphasis on Arctic charr. In Magurran, A. E. & R. May (eds), Evolution of Biological Diversity. Oxford University Press, Oxford, UK: 70–92.Google Scholar
  54. Smith, T. B. & S. Skúlason, 1996. Evolutionary significance of resource polymorphism in fishes, amphibians and birds. Annual Review of Ecology and Systematics 27: 111–133.CrossRefGoogle Scholar
  55. Smits, J. D., F. Witte & F. G. VanVeen, 1996. Functional changes in the anatomy of the pharyngeal jaw apparatus of Astatoreochromis alluaudi (Pisces, Cichlidae), and their effects on adjacent structures. Journal of Fish Biology 59: 389–409.Google Scholar
  56. Snorrason, S. S., S. Skúlason, B. Jonsson, H. J. Malmquist, P. M. Jonasson, J. T. Sandlund & T. Lindem, 1994. Trophic specialization in Arctic charr Salvelinus alpinus (Pisces; Salmonidae): morphological divergence and ontogenetic niche shifts. Journal of Fish Biology 52: 1–18.Google Scholar
  57. Starck, J. M., 1999. Structural flexibility of the gastro-intestinal tract of vertebrates – implications for evolutionary morphology. Zoologischer Anzeiger 238: 87–101.Google Scholar
  58. Stuart, B., A. P. Richard, M. Rona, C. Yves, A. D. Deborah & P. C. John, 2006. Stable isotopes indicate sex-specific and long-term individual foraging specialisation in diving seabirds. Marine Ecology Progress Series 311: 157–164.CrossRefGoogle Scholar
  59. Swanson, B. O., A. C. Gibb, J. C. Marks & D. A. Hendrickson, 2003. Trophic polymorphism and behavioral differences decrease intraspecific competition in a cichlid, Herichthys minckleyi. Ecology 84: 1441–1446.CrossRefGoogle Scholar
  60. Swanson, B., A. Gibb, J. Marks & D. Hendrickson, 2008. Variation in foraging behavior facilitates resource partitioning in a polymorphic cichlid, Herichthys minckleyi. Environmental Biology of Fishes 83: 147–154.CrossRefGoogle Scholar
  61. Uchii, K., N. Okuda, R. Yonekura, Z. Karube, K. Matsui & Z. Kawabata, 2007. Trophic polymorphism in bluegill sunfish (Lepomis macrochirus) introduced into Lake Biwa: evidence from stable isotope analysis. Limnology 8: 59–63.CrossRefGoogle Scholar
  62. Wainwright, P. C., C. W. Osenberg & G. G. Mittelbach, 1991. Trophic polymorphism in the pumpkinseed sunfish (Lepomis gibbosus Linnaeus): effects of environment on ontogeny. Functional Ecology 5: 40–55.CrossRefGoogle Scholar
  63. Warburton, K. & C. Thomson, 2006. Costs of learning: the dynamics of mixed-prey exploitation by silver perch, Bidyanus bidyanus (Mitchell, 1838). Animal Behaviour 71: 361–370.CrossRefGoogle Scholar
  64. Werner, E. E. & D. J. Hall, 1974. Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology 55: 1042–1052.CrossRefGoogle Scholar
  65. West-Eberhard, M. J., 1989. Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics 20: 249–278.CrossRefGoogle Scholar
  66. West-Eberhard, M. J., 2005. Developmental plasticity and the origin of species differences. Proceedings of the National Academy of Sciences 102: 6543–6549.CrossRefGoogle Scholar
  67. Wimberger, P. H., 1994. Trophic polymorphisms, plasticity and speciation in vertebrates. In Stouder, D. J., K. L. Fresh & R. J. Feller (eds), Theory and Application of Fish Feeding Ecology. Bellebaruch Library in Marine Science No. 18, Columbia S.C. University of South Carolina Press, Colombia, USA: 19–43.Google Scholar
  68. Wintzer, A. P. & P. J. Motta, 2005. Diet-induced phenotypic plasticity in the skull morphology of hatchery-reared Florida largemouth bass, Micropterus salmoides floridanus. Ecology of Freshwater Fish 14: 311–318.CrossRefGoogle Scholar
  69. Woo, K. J., K. H. Elliott, M. Davidson, A. J. Gaston & G. K. Davoren, 2008. Individual specialization in diet by a generalist marine predator reflects specialization in foraging behaviour. Journal of Animal Ecology 77: 1082–1091.CrossRefPubMedGoogle Scholar
  70. Wood, C. & C. J. Foote, 1996. Evidence for sympatric genetic divergence of anadromous and nonanadromous morphs of sockeye salmon (Oncorhynchus nerka). Evolution 50: 1265–1279.CrossRefGoogle Scholar
  71. Yonekura, R., K. Nakai & M. Yuma, 2002. Trophic polymorphism in introduced bluegill in Japan. Ecological Research 17: 49–57.CrossRefGoogle Scholar
  72. Zelditch, M. L., D. L. Swiderski, H. D. Sheets & W. L. Fink, 2004. Geometric Morphometrics for Biologists: A Primer. Elsevier, New York.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Scottish Centre for Ecology and the Natural EnvironmentUniversity of GlasgowGlasgowScotland, UK

Personalised recommendations