Advertisement

Hydrobiologia

, Volume 624, Issue 1, pp 171–189 | Cite as

Spatio-temporal variations of the zooplankton abundance and composition in a West African tropical coastal lagoon (Grand-Lahou, Côte d’Ivoire)

  • Raphaël N’doua Etilé
  • Aka Marcel Kouassi
  • Maryse N’guessan Aka
  • Marc Pagano
  • Valentin N’douba
  • N’guessan Joël Kouassi
Primary research paper

Abstract

Zooplankton constitutes a sensitive tool for monitoring environmental changes in coastal lagoons; however, the available information on zooplankton communities is not sufficient to optimize their rational management. The relationships between zooplankton distribution and environmental factors were studied in a tropical lagoon to test whether the indicator properties of zooplankton assemblages could be used to monitor water quality, in a context of expected eutrophication provoked by an increasing anthropogenic activity. Twenty-one (21) stations were sampled monthly from January to December 2004. The community was composed of 65 taxa including Copepoda, Rotifera, and Cladocera. Copepoda was the most abundant group (81% of total numbers). The main zooplankton species were Oithona brevicornis, Acartia clausi, and Brachionus plicatilis. The highest zooplankton abundance (171–175 ind. l−1) was recorded during the long, dry season (February–April) and the lowest (40–45 ind. l−1) during the rainy and the flood periods (June–July). At a spatial level, the lowest abundance was observed in the estuarine zone. During the dry seasons (December–April and August–September), marine zooplankton taxa were abundant near the channel of Grand-Lahou, and brackish water taxa dominated in the other sites. Multivariate analyses (Co-inertia) showed that the composition of zooplanktonic communities and their spatio-temporal variations were mainly controlled by salinity variations closely linked to the climatic and hydrological context. The role of the trophic state on zooplankton communities could not be clearly evidenced. Our results and a comparison with previous studies in the neighboring, highly polluted Ebrié Lagoon suggest that the ratio between Oithona and Acartia abundance could be used as biological indicator for the water quality.

Keywords

Zooplankton Organization Spatio-temporal variations Abundance Tropical lagoon Côte d’Ivoire 

Notes

Acknowledgments

The authors wish to express their sincere thanks to the staff of Center of Research Oceanologic (CRO) for fieldwork assistance and to the staff of Hydrobiology Laboratory of the Cocody-Abidjan University (Côte d’Ivoire) for their helpful revisions of the manuscript. The authors would like to thank two anonymous referees and the Associate Editor for their valuable comments and suggestions on the manuscript.

References

  1. Aka, M., M. Pagano, L. Saint-Jean, R. Arfi, M. Bouvy, P. Cecchi, D. Corbin & S. Thomas, 2000. Zooplankton variability in 49 shallow tropical reservoirs of Ivory Coast (West Africa). International Review of Hydrobiology 85: 491–504.CrossRefGoogle Scholar
  2. Aoyagui, A. S. M. & C. C. Bonecker, 2004. The art status of rotifer studies in natural environments of South America: floodplains. Acta Scientiarum. Biological Sciences 26: 385–406.Google Scholar
  3. Arcifa, M. S., E. A. T. Gomes & A. J. Meschiatti, 1992. Composition and fluctuations of the zooplankton of a tropical Brazilian reservoir. Archiv für Hydrobiologie 123: 479–495.Google Scholar
  4. Arfi, R., M. Pagano & L. Saint Jean, 1987. Communautés zooplanctoniques dans une lagune tropicale (la lagune Ebrie, Cote d’Ivoire): Variations spatio-temporelles. Revue d’Hydrobiologie Tropicale 20: 21–35.Google Scholar
  5. Attayde, J. L. & R. L. Bozelli, 1998. Assessing the indicator properties of zooplankton assemblages to disturbance gradients by canonical correspondence analysis. Canadian Journal of Fisheries and Aquatic Sciences 55: 1789–1797.CrossRefGoogle Scholar
  6. Bartoli, M., D. Nizzolo, P. Viaroli, E. Turolla, G. Castaldelli, E. A. Fano & R. Rossi, 2001. Impact of Tapes philippiarum farming on nutrient dynamics and benthic respiration in the Cacca di Goro. Hydrobiologia 455: 203–212.CrossRefGoogle Scholar
  7. Bianchi, F., F. Acri, F. B. Aubry, A. Berton, A. Boldrin, E. Camatti, D. Cassin & A. Comaschi, 2003. Can plankton communities be considered as bio-indicators of water quality in the Lagoon of Venice? Marine Pollution Bulletin 46(8): 964–971.PubMedCrossRefGoogle Scholar
  8. Binet, D., 1993. Zooplancton néritique de Côte d’Ivoire. In Le Loeuff, P., E. Marchal & J. B. Amon Kothias (eds), Environnement et Ressources aquatiques de Côte d’Ivoire; I. Le milieu marin. Editions de l’ORSTOM, Paris: 167–193.Google Scholar
  9. Blanc, L., C. Aliaume, A. Zerbi & G. Lasserre, 2001. Spatial and temporal co-structure analyses between ichthyofauna and environment: an example in the tropics. Comptes Rendus De L’Academie Des Sciences Serie III Sciences De La Vie, Life Sciences 324: 635–646.CrossRefGoogle Scholar
  10. Branco, C. W. C., F. D. Esteves & S. B. Kozlowsky, 2000. The zooplankton and other limnological features of a humic coastal lagoon (Lagoa Comprida, Mace, RJ) in Brazil. Hydrobiologia 437: 71–81.CrossRefGoogle Scholar
  11. Cairns, J., P. V. McCormick & B. R. Niederlehner, 1993. A proposed framework for developing indicators of ecosystem health. Hydrobiologia 263: 1–44. doi: 10.1007/BF00006084.CrossRefGoogle Scholar
  12. Carli, A. & P. Crisafi, 1983. Copepodi lagunari, guide per il riconoscimento delle specie animali delle acque lagunari e costiere iltliane. NHBS Environment Book Store: 124 pp.Google Scholar
  13. Cassie, R. M., 1968. Sample design in zooplankton sampling. UNESCO Monographs Oceanographic Methodology 2: 105–121.Google Scholar
  14. Corgosinho, P. C. & R. M. Pinto-Coelho, 2006. Zooplankton biomass, abundance and allometric patterns along an eutrophic gradient at Furras reservoir (Minas Gerais, Brazil). Acta Limnologica Brasiliensa 18: 213–224.Google Scholar
  15. De Ridder, M., 1981. Rotifères, Volume XI, fascicule 4. Cercle hydrobiologique de Bruxelles, Bruxelles: 191 pp.Google Scholar
  16. Dodson, S., 1992. Predicting Crustacean zooplankton species richness. Limnology and Oceanography 37: 848–856.CrossRefGoogle Scholar
  17. Dolédec, S. & D. Chessel, 1994. Co-inertia analysis: an alternative method for studying species-environment relationships. Freshwater Biology 31: 277–294.CrossRefGoogle Scholar
  18. Duggan, I. C., J. D. Green & R. J. Shiel, 2001. Distribution of rotifers in North Island, New Zealand, and their potential use as bioindicators of lake trophic state. Hydrobiologia 446: 155–164.CrossRefGoogle Scholar
  19. Durand, J. R., P. Dufour, D. Guiral & G. F. Z. Zabi, 1994. Environnement et ressources aquatiques en Côte d’Ivoire: 2. Les milieux lagunaires. Orstom Editions: 547 pp.Google Scholar
  20. Egborge, A. B. M., 1994. Salinity and the distribution of rotifers in the Lagos Harbour Badagry Creek system, Nigeria. Hydrobiologia 272: 95–104.CrossRefGoogle Scholar
  21. Ferrari, I., V. U. Ceccherelli & M. G. Mazzocchi, 1982. Structure du zooplankton dans deux lagunes du Delta du Pô. Oceanologica Acta 5: 293–302.Google Scholar
  22. Gubanova, A. D., I. G. Polikarpov, M. A. Saburova & I. Y. Prusova, 2002. Long-term dynamics of mesozooplankton by the example of the Copepoda community in Sevastopol Bay (1976–1996). Oceanology 42: 512–520.Google Scholar
  23. Guelorget, O. & J. P. Perthuisot, 1983. Le domaine paralique. Expressions géologiques, biologiques et économiques du confinement. Travaux du Laboratoire de Géologie, no. 16. Presse de l’Ecole Normale Supérieure, Paris: 137 pp.Google Scholar
  24. Guiral, D., 1992. L’instabilite physique, facteur d’organisation et de structuration d’un ecosysteme tropical saumatre peu profond: La lagune Ebrie. Vie et Milieu 42: 73–92.Google Scholar
  25. Kâ, S., M. Pagano, N. Ba, M. Bouvy, C. Leboulanger, R. Arfi, O. T. Thiaw, E. H. M. Ndour, D. Corbin, D. Defaye, C. Cuoc & E. Kouassi, 2006. Zooplankton distribution related to environmental factors and phytoplankton in a shallow tropical lake (Lake Guiers, Senegal, West Africa). International Review of Hydrobiology 91(5): 389–405.CrossRefGoogle Scholar
  26. Kjerfive, B., 1994. Coastal lagoons. In Kjerfive, B. (ed.), Coastal Lagoon Processes. Elsevier Sciences, Amsterdam: 1–8.CrossRefGoogle Scholar
  27. Kouassi, E., M. Pagano, L. Saint Jean, R. Arfi & M. Bouvy, 2001. Vertical migrations and feeding rhythms of Acartia clausi and Pseudodiaptomus hessei (Copepoda: Calanoida) in a tropical lagoon (Ebrie, Cote d’Ivoire). Estuarine, Coastal and Shelf Science 52: 715–728.CrossRefGoogle Scholar
  28. Kouassi, E., M. Pagano, L. Saint Jean & J. C. Sorbe, 2006. Diel vertical migrations and feeding behavior of the mysid Rhopalophthalmus africana (Crustacea: Mysidacea) in a tropical lagoon (Ebrie, Cote d’Ivoire). Estuarine, Coastal and Shelf Science 67(3): 355–368.CrossRefGoogle Scholar
  29. Lam Hoai, T., 1985. Evolution saisonniere du zooplancton dans trois sites peu profonds de Thau, une lagune Nord-Mediterraneenne. Hydobiologia 128: 161–174.CrossRefGoogle Scholar
  30. Landa, G. G., F. A. R. Barbosa, A. C. Rietzler & P. M. Maia Barbosa, 2007. Thermocyclops decipiens (Kiefer, 1929) (Copepoda, cyclopoida) as indicator of water quality in the State of Minas Gerais, Brazil. Brazilian Archives of Biology and Technology 50(4): 695–705.CrossRefGoogle Scholar
  31. Lecolle, J., 1971. Sédimentologie des fonds lagunaires et estuariens: variations morphologiques saisonnières de l’embouchure d’un fleuve en climat intertropical (le Bandama-Côte d’Ivoire). Cahiers ORSTOM. Série Géologie 3: 189–220.Google Scholar
  32. Magadza, C. H. D., 1994. Evaluation of eutrophication control in Lake Chivero, Zimbabwe, by multivariate analysis of zooplankton. Hydrobiologia 272(1–3): 277–292.CrossRefGoogle Scholar
  33. Mageed, A. A., 2006. Spatio-temporal variations of zooplankton community in the hypersaline lagoon of Bardawil, north Sinai, Egypt. Egyptian journal of aquatic research 32: 168–183.Google Scholar
  34. Marcus, N., 2004. An overview of the impacts of eutrophication and chemical pollutants on copepods of the coastal zone. Zoological Studies 43(2): 211–217.Google Scholar
  35. Mitsch, W. J. & J. G. Gosselink, 1993. Wetlands, 2nd ed. Van Nostrand Reinhold Press, New York.Google Scholar
  36. Murrel, M. C. & E. M. Lores, 2004. Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: importance of cyanobacteria. Journal of Plankton Research 26(3): 371–382. doi: 10.1093/plankt/fbh038.CrossRefGoogle Scholar
  37. Pagano, M. & L. Saint-Jean, 1994. Le zooplancton. In Durand J. R., P. Dufour, D. Guiral & G. S. Zabi (eds), Environnement et ressources aquatiques de Côte d’Ivoire. Edition ORSTOM, Paris: 155–188.Google Scholar
  38. Pagano, M., E. Kouassi, L. Saint Jean, R. Arfi & M. Bouvy, 2003. Feeding of Acartia clausi and Pseudodiaptomus hessei (Copepoda: Calanoida) on natural particles in a tropical lagoon (Ebrie, Cote d’Ivoire). Estuarine, Coastal and Shelf Science 56(3–4): 433–445.CrossRefGoogle Scholar
  39. Pagano, M., E. Kouassi, R. Arfi, M. Bouvy & L. Saint Jean, 2004. In situ spawning rate of the calanoid copepod Acartia clausi in a tropical lagoon (Ebrie, Cote d’lvoire): diel variations and effects of environmental factors. Zoological Studies 43(2): 244–254.Google Scholar
  40. Pastoma, H., 1994. Future of research in coastal lagoons. In Kjerfive, B. (ed.), Coastal Lagoon Processes. Elsevier Oceanolography Series no. 60, Amsterdam: 553–561.Google Scholar
  41. Pinel-Alloul, B., 1995. Les invertébrés prédateurs du zooplancton. In Pourriot, R. & M. Meybeck (eds), Limnologie Générale. Masson. Collection d’Ecologie, Paris: 541–564.Google Scholar
  42. Pinto Coelho, R., B. Pinel Alloul, G. Methot & K. E. Havens, 2005. Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: variation with trophic status. Canadian Journal of Fisheries and Aquatic Sciences 62(2): 348–361.CrossRefGoogle Scholar
  43. Pont, D., 1995. Le zooplancton herbivore dans les chaînes alimentaires pélagiques. In Pourriot, R. & M. Meybeck (eds), Limnologie Générale. Masson. Collection d’Ecologie, Paris: 515–540.Google Scholar
  44. Repelin, R., 1985. Le zooplancton dans le système lagunaire ivoirien. Variations saisonnières et cycles nycthéméraux en Lagune Ebrié. Doc. Scient. Centre Rech. Océanogr. Abidjan 16: 1–43.Google Scholar
  45. Rose, M., 1933. Faune de France 26. Copépode pélagiques. Office central de faunistique, Paris: 372 pp.Google Scholar
  46. Rossa, D. C., F. A. Lansac-Tôha, C. C. Bonecker & L. F. M. Velho, 2001. Abundance of cladocerans in the littoral region of two environments of upper Parana river floodpain, Mata Grosso du sul, Brazil. Revista Brasileira de Biologia 61: 45–53.CrossRefGoogle Scholar
  47. Saint-Jean, L. & M. Pagano, 1990. Variations nycthémérales de la répartition verticale et de l’efficacité de collecte du zooplancton en lagune Ebrié (Côte d’Ivoire). Hydrobiologia 194: 247–265.Google Scholar
  48. Santangelo, J. M., A. D. M. Rocha, R. L. Bozelli, L. S. Carneiro & F. D. A. Esteves, 2007. Zooplankton responses to sandbar opening in a tropical eutrophic coastal lagoon. Estuarine, Coastal and Shelf Science 71(3–4): 657–668.CrossRefGoogle Scholar
  49. Siokou-Frangou, I., E. Papathanassiou, A. Lepretre & S. Frontier, 1998. Zooplankton assemblages and influence of environmental parameters on them in a Mediterranean coastal area. Journal of Plankton Research 20: 847–870.CrossRefGoogle Scholar
  50. Sterza, J. M. & L. Fernandes, 2006. Distribution and abundance of Cladocera (Branchiopoda) in the Paraíba do Sul River estuary, Rio de Janeiro, Brazil. Brazilian Journal of Oceanography 54: 193–204.Google Scholar
  51. Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Fisheries Research Board of Canada 167: 1–311.Google Scholar
  52. Tackx, M. L. M., N. De Pauw, R. Van Mieghem, F. Azemar, A. Hannouti, S. Van Damme, F. Fiers, N. Daro & P. Meire, 2004. Zooplankton in the Schelde estuary, Belgium and the Netherlands. Spatial and temporal patterns. Journal of Plankton Research 26(2): 133–141.CrossRefGoogle Scholar
  53. Thioulouse, J., D. Chessel, S. Dolédec & J.-M. Olivier, 1997. ADE-4, a multivariate analysis and graphical display software. Statistics and Computing 7: 75–80.CrossRefGoogle Scholar
  54. Tregouboff, G. & M. Rose, 1957. Manuel de planctonologie méditerranéenne. Centre National de la Recherche Scientifique edition, Paris: 587 pp.Google Scholar
  55. Webber, M., E. Edwards Myers, C. Campbell & D. Webber, 2005. Phytoplankton and zooplankton as indicators of water quality in Discovery Bay, Jamaica. Hydrobiologia 545: 177–193.CrossRefGoogle Scholar
  56. Wiafe, G. & C. L. J. Frid, 2001. Marine zooplankton of West Africa (with CDROM). Darwin Initiative Report 5, Ref. 162/7/451: 125 pp.Google Scholar
  57. Wilson, J. G., 1994. The role of bioindicators in estuarine management. Estuaries 17: 94–101.CrossRefGoogle Scholar
  58. Yté, W. A., N. C. Kouassi & S. Yoro, 1996. Peuplement zooplanctonique du lac de Buyo (Côte d’Ivoire): Liste faunistique et distribution. Agronomie Africaine 8: 143–152.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Raphaël N’doua Etilé
    • 1
    • 2
  • Aka Marcel Kouassi
    • 2
  • Maryse N’guessan Aka
    • 2
  • Marc Pagano
    • 3
  • Valentin N’douba
    • 1
  • N’guessan Joël Kouassi
    • 1
    • 2
  1. 1.Laboratoire d’Hydrobiologie, UFR BiosciencesUniversité de Cocody-AbidjanAbidjanIvory Coast
  2. 2.Centre de Recherches Océanologiques (CRO)AbidjanIvory Coast
  3. 3.IRD, UR 167, COMMarseille Cedex 09France

Personalised recommendations