Hydrobiologia

, Volume 623, Issue 1, pp 1–35 | Cite as

Diatom teratological forms and environmental alterations: a review

  • Elisa Falasco
  • Francesca Bona
  • Guido Badino
  • Lucien Hoffmann
  • Luc Ector
Review

Abstract

The foremost feature of a diatom is the species-specific ornamentation of the silicon cell wall, which is preserved and faithfully reproduced through the generations. If exposed to different kinds of stress during reproductive processes, the diatom cell outline and striation pattern can change in different ways, producing teratological forms. These modifications can be slight, leading to difficulties in establishing a threshold between normal and teratological cells, or so marked that it is very difficult to recognize whether an unknown form is teratological or whether it belongs to a new species or variety. Teratological forms appear as an accidental effect of environmental stresses, which can be both physical and chemical. Artificial conditions also often lead to the development of teratological forms. Most frequently, diatoms present abnormal valve outline (lack of symmetry, bent, incised, swollen, or notched profile), unusual raphe system (fragmented, displaced, and bifurcated), abnormal striation pattern (irregular, altered, fragmented, and branched), and unusual raphe channel system (distorted, curved, and occasionally doubled back). In this review we analyzed 222 articles, published from 1890 up to 2008, with the aim to correlate the abnormal diatom cell morphology to environmental alterations, in a perspective which can greatly enhance the evaluation of river environmental quality for biomonitoring purposes.

Keywords

Biomonitoring purpose Diatoms River contamination Teratology 

References

  1. Admiraal, W., H. Blanck, M. Buckert-De Jong, H. Guasch, N. Ivorra, V. Lehmann, B. A. H. Nyström, M. Paulsson & S. Sabater, 1999. Short-term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream. Water Research 39: 1989–1996.Google Scholar
  2. Adshead-Simonsen, P. C., G. E. Murray & D. J. Kushner, 1981. Morphological changes in the diatom Tabellaria flocculosa, induced by very low concentrations of cadmium. Bulletin of Environmental Contamination and Toxicology 26: 745–748.PubMedGoogle Scholar
  3. Aleem, A. A., 1950. Distribution and ecology of British marine littoral diatoms. The Journal of Ecology 38: 75–106.Google Scholar
  4. Anderson, D. M., F. M. M. Morel & R. R. L. Guillard, 1978. Growth limitation of a coastal diatom by low zinc ion activity. Nature 276: 70–71.Google Scholar
  5. Antoine, S. E. & K. Benson-Evans, 1983. Polymorphism and size variation in Didymosphenia geminata from Great Britain. British Phycological Journal 18: 199–213.Google Scholar
  6. Antoine, S. E. & K. Benson-Evans, 1984. Teratological variations in the River Wye diatom flora, Wales, UK. In Ricard, M. (ed.), Proceedings of the 8th International Diatom Symposium, Paris 1984. Koeltz, Koenigstein: 59–66.Google Scholar
  7. Azam, F., B. B. Hemmingsen & B. E. Volcani, 1974. Role of silicon in diatom metabolism. V. Silicic acid transport and metabolism in the heterotrophic diatom Nitzschia alba. Archives of Microbiology 97: 103–114.PubMedGoogle Scholar
  8. Baos, R., L. García-Villada, M. Agrelo, V. López-Rodas, F. Hiraldo & E. Costas, 2002. Short-term adaptation of microalgae in highly stressful environments: an experimental model analysing the resistance of Scenedesmus intermedius (Chlorophyceae) to the heavy metals mixture from the Aznalcóllar mine spill. European Journal of Phycology 37: 593–600.Google Scholar
  9. Barber, H. G. & J. R. Carter, 1981. Observations on some deformities found in British diatoms. Microscopy 34: 214–226.Google Scholar
  10. Behrenfeld, M. J., J. T. Hardy & H. Lee, 1992. Chronic effects of ultraviolet-B radiation on growth and cell volume of Phaeodactylum tricornutum (Bacillariophyceae). Journal of Phycology 58: 757–760.Google Scholar
  11. Bérard, A., T. Pelte, E. Menthon, J. C. Druart & X. Bourrain, 1998. Caractérisation du phytoplancton de deux systèmes limniques vis-à-vis d’un herbicide inhibiteur de la photosynthèse. La méthode PICT: application et signification. Annales de Limnologie 34: 269–282.CrossRefGoogle Scholar
  12. Bergon, F., 1907. Biologie des diatomées. Les processus de division, de rajeunissement de la cellule et de sporulation chez le Biddulphia mobiliensi. Bulletin de la Société Botanique de France 54: 327–358.Google Scholar
  13. Bhattacharyya, P. & B. E. Volcani, 1980. Sodium-dependent silicate transport in the apochlorotic marine diatom Nitzschia alba. Proceedings of the National Academy of Sciences of the United States of America 77: 6386–6390.PubMedGoogle Scholar
  14. Blank, G. S. & C. W. Sullivan, 1983. Diatom mineralization of silicic acid. VII. Influence of microtubule drugs on symmetry and pattern formation in valves of Navicula saprophila during morphogenesis. Journal of Phycology 19: 294–301.Google Scholar
  15. Bothwell, M. L., D. Sherbot, A. C. Roberge & R. J. Daley, 1993. Influence of natural ultraviolet radiation on lotic periphytic diatom community growth, biomass accrual, and species composition: short-term vs. long-term effects. Journal of Phycology 29: 24–35.Google Scholar
  16. Buma, A. G. J., H. J. Zemmelink, K. A. Sjollema & W. W. C. Gieskes, 1995. Effect of UV-B on cell characteristics of the marine diatom Cyclotella sp. In Bauer, H. & C. Nolan (eds), The Effects of Environmental UV-B Radiation on Health and Ecosystems. European Commission EUR 15607: 305–311.Google Scholar
  17. Campbell, P. G. C., O. Errecalde, C. Fortin, W. R. Hiriart-Baer & B. Vigneault, 2002. Metal bioavailability to phytoplankton—applicability of the biotic ligand model. Comparative Biochemistry and Physiology—Part C: Toxicology and Pharmacology 133: 189–206.PubMedGoogle Scholar
  18. Canter, H. M. & J. W. G. Lund, 1948. Studies on the plankton parasites. I. Fluctuations in the numbers of Asterionella formosa Hass. in relation to fungal epidemics. New Phytologist 47: 238–261.Google Scholar
  19. Cattaneo, A., A. Asioli, P. Comoli & M. Manca, 1998. Organisms’ response in a chronically polluted lake supports hypothesized link between stress and size. Limnology and Oceanography 43: 1938–1943.Google Scholar
  20. Cattaneo, A., Y. Couillard, S. Wunsam & M. Courcelles, 2004. Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Québec, Canada). Journal of Paleolimnology 32: 163–175.Google Scholar
  21. Cholnoky-Pfannkuche, K., 1971. Abnormaler Formenwechsel von Nitzschia palea in Kultur. Nova Hedwigia 21: 883–886.Google Scholar
  22. Conway, H. L. & P. J. Harrison, 1977. Marine diatoms grown in chemostats under silicate or ammonium limitation IV. Transient response of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida to a single addition of the limiting nutrient. Marine Biology 43: 33–43.Google Scholar
  23. Conway, H. L., P. J. Harrison & C. O. Davis, 1976. Marine diatoms grown in chemostats under silicate or ammonium limitation II. Transient response of Skeletonema costatum to a single addition of the limiting nutrient. Marine Biology 35: 187–199.Google Scholar
  24. Cox, J. D., 1890. Deformed diatoms. Proceedings of the American Society of Microscopists 12: 178–183.Google Scholar
  25. Cox, E. J., 1984. Some taxonomic and ecological considerations of morphological variation within natural populations of benthic diatoms. In Ricard, M. (ed.), Proceedings of the 8th International Diatom Symposium, Paris 1984. Koeltz, Koenigstein: 59–66.Google Scholar
  26. Cox, E. J., 1995. Morphological variation in widely distributed diatom taxa: taxonomic and ecological implications. In Marino, D. & M. Montresor (eds), Proceedings of the 13th International Diatom Symposium, Italy. Biopress, Bristol: 335–345.Google Scholar
  27. Cox, E. J., 2006. Raphe loss and spine formation in Diadesmis gallica (Bacillariophyta)—an intriguing example of phenotypic polymorphism in a diatom. Nova Hedwigia 130: 163–176.Google Scholar
  28. Daniel, G. F. & A. H. L. Chamberlain, 1981. Copper immobilization in fouling diatoms. Botanica Marina 24: 229–243.Google Scholar
  29. Davies, A. G., 1978. Pollution studies with marine plankton. Part II. Heavy metals. Advances in Marine Biology 15: 381–508.Google Scholar
  30. De Filippis, L. F. & C. K. Pallaghy, 1994. Heavy metals: sources and biological effects. In Rai, L. C., J. P. Gaur & C. J. Soeder (eds), Algae and Water Pollution. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart: 31–77.Google Scholar
  31. De Filippis, L. F., R. Hampp & H. Zeigler, 1981. The effects of sub-lethal concentrations of zinc, cadmium and mercury on Euglena. Growth and pigments. Zeitschrift fur Pflanzenphysiologie 101: 37–47.Google Scholar
  32. De La Rocha, C. L., D. A. Hutchins & M. A. Brzezinski, 2000. Effects of iron and zinc deficiency on elemental composition and silica production by diatoms. Marine Ecology Progress Series 195: 71–79.Google Scholar
  33. Debenest, T., M. Coste, F. Delmas & E. Pinelli, 2006. Les frustules déformés de diatomées benthiques et les pesticides: Le cas des pollutions agricoles dans les coteaux de Gascogne (Sud-Ouest de la France). Diatomania 10: 62–65.Google Scholar
  34. Debenest, T., J. Silvestre, M. Coste, F. Delmas & E. Pinelli, 2008. Herbicide effects on freshwater benthic diatoms: Induction of nucleus alterations and silica wall abnormalities. Aquatic Toxicology 88: 88–94.PubMedGoogle Scholar
  35. Decho, A. W., 1990. Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanography and Marine Biology: An Annual Review 28: 73–153.Google Scholar
  36. Deniseger, J., A. Austin & W. P. Lucey, 1986. Periphyton communities in a pristine mountain stream above and below heavy metal mining operations. Freshwater Biology 16: 209–218.Google Scholar
  37. Dickman, D. M., 1998. Benthic marine diatom deformities associated with contaminated sediments in Hong Kong. Environment International 24: 749–759.Google Scholar
  38. Drum, R. W., 1964. Notes on Iowa Diatoms. VI. Frustular aberrations in Surirella ovalis. Journal of the Iowa Academy of Science 71: 51–55.Google Scholar
  39. Durbin, E. G., 1977. Studies on the autoecology of the marine diatom Thalassiosira nordenskioeldii. II. The influence of cell size on growth rate and carbon, nitrogen, chlorophyll a and silica content. Journal of Phycology 13: 150–155.Google Scholar
  40. Edlund, M. B. & E. F. Stoermer, 1991. Sexual reproduction in Stephanodiscus niagarae. Journal of Phycology 27: 780–793.Google Scholar
  41. Estes, A. & R. R. Dute, 1994. Valve abnormalities in diatom clones maintained in long-term culture. Diatom Research 9: 249–258.Google Scholar
  42. Feldt, L. E., E. F. Stoermer & C. L. Schelske, 1973. Occurrence of morphologically abnormal Synedra populations in Lake Superior phytoplankton. In Proceedings of the 16th Conference Great Lakes Research, Huron, Ohio, USA, International Association for Great Lakes Research, Ann Arbor, MI:34–39.Google Scholar
  43. Fisher, N. S. & D. Frood, 1980. Heavy metals and marine diatoms: influence of dissolved organic compounds on toxicity and selection for metal tolerance among four species. Marine Biology 59: 85–93.Google Scholar
  44. Fisher, N. S., G. J. Jones & D. M. Nelson, 1981. Effects of copper and zinc on growth, morphology, and metabolism of Asterionella japonica (Cleve). Journal of Experimental Marine Biology and Ecology 51: 37–56.Google Scholar
  45. Foster, P. L., 1982. Metal resistances of Chlorophyta from rivers polluted by heavy metals. Freshwater Biology 12: 41–61.Google Scholar
  46. Frevet, T., 1985. Heavy metals in Lake Kinneret (Israel). I. Total copper and cupric ion concentrations in Lake Kinneret and the River Jordan. Archives of Hydrobiology 104: 527–542.Google Scholar
  47. Gavis, J., R. R. L. Guillard & B. L. Woodward, 1981. Cupric ion activity and the growth of phytoplankton clones isolated from different marine environments. Journal of Marine Research 39: 315–333.Google Scholar
  48. Geissler, U., 1970a. Die Variabilität der Schalenmerkmale bei den Diatomeen. Nova Hedwigia 19: 623–773.Google Scholar
  49. Geissler, U., 1970b. Die Schalenmerkmale der Diatomeen, Ursachen ihrer Variabilität und Bedeutung für die Taxonomie. Nova Hedwigia Beiheft 31: 511–535.Google Scholar
  50. Geissler, U., 1982. Experimentelle Untersuchungen zur Variabilität der Schalenmerkmale bei einigen zentrischen Süßwasser-Diatomeen. I. Der Einfluß unterschiedlicher Salzkonzentrationen auf den Valva-Durchmesser von Stephanodiscus hantzschii Grunow. Nova Hedwigia Beiheft 73: 211–246.Google Scholar
  51. Geissler, U., 1986. Experimental investigations on the variability of frustule characteristics of several freshwater diatoms. 2. The influence of different salt concentrations on some valve structures of Stephanodiscus hantzschii Grunow. In Ricard, M. (ed.), Proceedings of the 8th International Diatom Symposium, Paris 1984. Koeltz, Koenigstein: 59–66.Google Scholar
  52. Geitler, L., 1932. Der Formwechsel der pennaten Diatomeen (Kieselalgen). Archiv fur Protistenkunde 78: 1–226.Google Scholar
  53. Geitler, L., 1939. Gameten - und Auxosporenbildung von Synedra ulna im Vergleich mit anderen pennaten Diatomeen. Planta 30: 551–566.Google Scholar
  54. Geitler, L. 1969. Comparative studies on the behavior of allogamous pennate diatoms in auxospore formation. American Journal of Botany 56; Special Issue: XI International Botanical Congress held at the University of Washington (Aug., 1969): 718–722.Google Scholar
  55. Gekeler, W., E. Grill, E. L. Winnacker & M. H. Zenk, 1988. Algae sequester heavy metals via synthesis of phytochelatin complexes. Archives of Microbiology 150: 197–202.Google Scholar
  56. Genter, R. B., D. S. Cherry, E. P. Smith & J. Cairns Jr, 1987. Algal periphyton population and community changes from zinc stress in stream mesocosms. Hydrobiologia 153: 261–275.Google Scholar
  57. George, S. G., 1990. Biochemical and cytological assessments of metal toxicity in marine animals. In Furness, R. W. & P. S. Rainbow (eds), Heavy Metals in the Marine Environment. CRC Press, Boca Raton: 123–142.Google Scholar
  58. Gledhill, M., M. Nimmo, S. J. Hill & M. T. Brown, 1997. The toxicity of copper (II) species to marine algae, with particular reference to microalgae. Journal of Phycology 33: 2–11.Google Scholar
  59. Gold, C., A. Feurtet-Mazel, M. Coste & A. Boudou, 2003a. Impacts of Cd and Zn on the development of periphytic diatom communities in artificial streams located along a river pollution gradient. Archives of Environmental Contamination and Toxicology 44: 189–197.PubMedGoogle Scholar
  60. Gold, C., A. Feurtet-Mazel, M. Coste & A. Boudou, 2003b. Effects of cadmium stress on periphytic diatom communities in indoor artificial streams. Freshwater Biology 48: 316–328.Google Scholar
  61. Gómez, N. & M. Licursi, 2003. Abnormal forms in Pinnularia gibba (Bacillariophyceae) in a polluted lowland stream from Argentina. Nova Hedwigia 77: 389–398.Google Scholar
  62. Gómez, N., M. V. Sierra, A. Cortelezzi & A. Rodrigues Capítulo, 2008. Effects of discharges from the textile industry on the biotic integrity of benthic assemblages. Ecotoxicology and Environmental Safety 69: 472–479.PubMedGoogle Scholar
  63. Gordon, R. & R. W. Drum, 1994. The chemical basis of diatom morphogenesis. International Review of Cytology 150: 243–372.Google Scholar
  64. Granetti, B., 1968a. Alcune forme teratologiche comparse in colture di Navicula minima Grun. e Navicula seminulum Grun. Giornale Botanico Italiano 102: 469–484.Google Scholar
  65. Granetti, B., 1968b. Comportamento di un carattere teratologico comparso in Navicula minima Grun. Giornale Botanico Italiano 102: 507–513.Google Scholar
  66. Granetti, B., 1975. Alterazioni strutturali in frustuli di Navicula pelliculosa (Bréb.) Hilse coltivata in vitro. Rivista di Idrobiologia 14: 170–176.Google Scholar
  67. Granetti, B., 1978. Struttura di alcune valve teratologiche di Navicula gallica (W. Smith) Van Heurck. Giornale Botanico Italiano 112: 1–12.Google Scholar
  68. Grill, E., 1987. Phytochelatine, die Schwermetall-bindenden Peptide der höheren Pflanzen. Doktorarbeit, Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München: 183 pp.Google Scholar
  69. Grill, E., 1989. Phytochelatins in plants. In Hamer, D. H. & D. R. Winge (eds), Metal Ion Homeostasis: Molecular Biology and Biochemistry. Alan R. Liss, New York: 283–300.Google Scholar
  70. Gueguen, C., R. Gilbin, M. Pardos & J. Dominik, 2004. Water toxicity and metal contamination assessment of a polluted river: the Upper Vistula River (Poland). Applied Geochemistry 19: 153–162.Google Scholar
  71. Gustavson, K. & S. A. Wängberg, 1995. Tolerance induction and succession in microalgae communities exposed to copper and atrazine. Aquatic Toxicology 32: 283–302.Google Scholar
  72. Håkansson, H. & V. Chepurnov, 1999. A study of variation in valve morphology of the diatom Cyclotella meneghiniana in monoclonal cultures: effect of auxospore formation and different salinity conditions. Diatom Research 14: 251–272.Google Scholar
  73. Håkansson, H. & H. Kling, 1990. The current status of some very small freshwater diatoms of the genera Stephanodiscus and Cyclostephanos. Diatom Research 5: 273–287.Google Scholar
  74. Håkansson, H. & A. Korhola, 1998. Phenotypic plasticity in the diatom Cyclotella meneghiniana or a new species? Nova Hedwigia 66: 187–196.Google Scholar
  75. Harding, J. P. C. & B. A. Whitton, 1976. Resistance to zinc of Stigeoclonium tenue in the field and the laboratory. British Phycological Journal 11: 417–426.Google Scholar
  76. Harrison, P. J., H. L. Conway, R. W. Holmes & C. O. Davis, 1977. Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida. Marine Biology 43: 19–31.Google Scholar
  77. Hayek, J. M. W. & R. I. Hulbary, 1956. A survey of soil diatoms. Proceedings of the Iowa Academy of Science 63: 327–338.Google Scholar
  78. Hellawell, J. M., 1978. Biological Surveillance of Rivers: A Biological Monitoring Handbook. Water Research Centre, Hertz: 332 pp.Google Scholar
  79. Hessen, D. O., H. J. De Lange & E. Van Donk, 1997. UV-induced changes in phytoplankton cells and its effects on grazers. Freshwater Biology 38: 513–524.Google Scholar
  80. Hildebrand, M., 2000. Silicic acid transport and its control during cell wall silification in diatoms. In Baeuerlein, E. (ed.), Biomineralization of Nano and Micro-Structure. Wiley-VCH, Weinheim: 171–188.Google Scholar
  81. Hildebrand, M., B. E. Volcani, W. Gassman & J. I. Schroeder, 1997. A gene family of silicon transporters. Nature 385: 688–689.PubMedGoogle Scholar
  82. Hostetter, H. P. & K. D. Rutherford, 1976. Polymorphism of the diatom Pinnularia brebissonii in culture and a field collection. Journal of Phycology 12: 140–146.Google Scholar
  83. Huber-Pestalozzi, G., 1946. Der Walensee und sein Plankton. Zeitschrift fur Hydrologie 10: 1–200.Google Scholar
  84. Husaini, Y. & L. C. Rai, 1991. Studies on nitrogen and phosphorus-metabolism and the photosynthetic electron-transport system of Nostoc linckia under cadmium stress. Journal of Plant Physiology 138: 429–435.Google Scholar
  85. Hustedt, F., 1955. Zellteilungsfolge und Variabilität bei Diatomeen. Archives of Microbiology 21: 391–400.Google Scholar
  86. Hustedt, F., 1956. Kieselalgen (Diatomeen). Einführung in die Kleinlebwelt. Kosmos Verlag, Stuttgart: 70 pp.Google Scholar
  87. Hustedt, F., 1961. Kieselalgen (Diatomeen) Sammlung: Einführung in die Kleinlebewelt. 2. verbes. aufl. Kosmos-Verlag, Stuttgart.Google Scholar
  88. Irwin, R. J., M. VanMouwerik, L. Stevens, M. D. Seese & W. Basham, 1997. Environmental Contaminant Encyclopedia. Fluoranthene Entry Water Resources Division National Park Service. Federal Government of Colorado, Fort Collins, Colorado: 44 pp.Google Scholar
  89. Ivorra, N., J. Hettelaar, G. M. J. Tubbing, H. M. S. Kraak, S. Sabater & W. Admiraal, 1999. Translocation of microbenthic algal assemblages used for in situ analysis of metal pollution in rivers. Archives of Environmental Contamination and Toxicology 37: 19–28.PubMedGoogle Scholar
  90. Ivorra, N., S. Bremer, H. Guash, M. H. S. Kraak & W. Admiraal, 2000. Differences in the sensitivity of benthic microalgae to Zn and Cd regarding biofilm development and exposure history. Environmental Toxicology and Chemistry 19: 1332–1339.Google Scholar
  91. Ivorra, N., C. Barranguet, M. Jonker, M. H. S. Kraak & W. Admiraal, 2002. Metal-induced tolerance in the freshwater microbenthic diatom Gomphonema parvulum. Environmental Pollution 16: 147–157.Google Scholar
  92. Jahn, R., 1986. A study of Gomphonema angur Ehrenberg: the structure of the frustule and its variability in clones and populations. In Ricard, M. (ed.), Proceedings of the 8th International Diatom Symposium, Paris 1984. Koeltz, Koenigstein: 59–66.Google Scholar
  93. Jaworsky, J. F., 1987. Group report: lead. In Hutchinson, T. C. & K. M. Meema (eds), Lead, Mercury, Cadmium and Arsenic in the Environment. Scope 31. Wiley, Chichester: 53–68.Google Scholar
  94. Joux-Arab, L., B. Berthet & J. M. Robert, 2000. Do toxicity and accumulation of copper change during size reduction in the marine pennate diatom Haslea ostrearia? Marine Biology 36: 323–330.Google Scholar
  95. Karentz, D., J. E. Cleaver & D. L. Mitchell, 1991. Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. Journal of Phycology 27: 326–341.Google Scholar
  96. Kelly, M. G. & B. A. Whitton, 1989. Relationship between accumulation and toxicity of zinc in Stigeoclonium (Chaetophorales, Chlorophyta). Phycologia 28: 512–517.Google Scholar
  97. Khoshmanesh, A., F. Lawson & I. G. Prince, 1997. Cell surface area as a major parameter in the uptake of cadmium by unicellular green microalgae. Chemical Engineering Journal 65: 13–19.Google Scholar
  98. Kinross, J. H., N. Christofi, P. A. Read & R. A. Harriman, 1993. Filamentous algal communities related to pH in streams in Trossachs, Scotland. Freshwater Biology 30: 301–317.Google Scholar
  99. Kolbe, R. W., 1932. Grundlinien einer allgemeinen Ökologie der Diatomeen. Ergebnisse der Biologie 8: 222–348.Google Scholar
  100. Krammer, K., 1992. Pinnularia: eine Monographie der europäischen Taxa. Bibliotheca Diatomologica 26: 1–353.Google Scholar
  101. Krammer, K. & H. Lange-Bertalot, 1991. Bacillariophyceae. 3. Teil: Centrales Fragilariaceae, Eunotiaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Die Süßwasserflora von Mitteleuropa, Bd. 2. Gustav Fischer Verlag, Stuttgart, Jena: 576 pp.Google Scholar
  102. Lage, O. M., A. M. Parente & R. Salema, 1994. Electrophoretic analysis of polypeptides of Prorocentrum micans Ehrenberg exposed to toxic levels of copper. Review of Palaeobotany and Palynology 84: 107–112.Google Scholar
  103. Lage, O. M., H. M. V. M. Soares, M. T. S. D. Vasconcelos, A. M. Parente & R. Salema, 1996. Toxicity effects of copper (II) on the marine dinoflagellate Amphidinium carterae: influence of metal speciation. European Journal of Phycology 31: 341–348.Google Scholar
  104. Leboime, R., 1957. Observations sur les variations de forme de la diatomée Raphoneis amphiceros Ehr. Bulletin de Microscopie Appliquée 7: 127–134.Google Scholar
  105. Lee, M. & C. W. Li, 1992. The origin of the silica deposition vesicle of diatoms. Botanical Bulletin Academia Sinica 33: 317–325.Google Scholar
  106. Lee, J. J. & X. Xenophontes, 1989. The unusual life cycle of Navicula muscatinei. Diatom Research 4: 69–77.Google Scholar
  107. Lee, J. G., B. A. Ahner & F. M. M. Morel, 1996. Export of cadmium and phytochelatin by the marine diatom Thalassiosira weissflogii. Environmental Science and Technology 30: 1814–1821.Google Scholar
  108. Lehninger, A. L., 1970. Biochemistry. Worth, New York: 833 pp.Google Scholar
  109. Leland, H. V. & J. L. Carter, 1984. Effects of copper on species composition of periphyton in a Sierra Nevada, California, stream. Freshwater Biology 14: 281–296.Google Scholar
  110. Lewin, J. C., 1954. Silicon metabolism in diatoms. I. Evidence for the role of reduced sulphur compounds in silicon utilization. Journal of General Physiology 37: 589–599.PubMedGoogle Scholar
  111. Löeffler, S., A. Hochberger, E. Grill, E. L. Winnacker & M. H. Zenk, 1989. Termination of the phytochelatin synthase reaction through sequestration of heavy metals by the reaction product. FEBS Letters 258: 42–46.Google Scholar
  112. Lund, J. W. G., 1945. Observations on soil algae. I. The ecology, size and taxonomy of British soil diatoms. Part I. New Phytologist 44: 196–219.Google Scholar
  113. Lund, J. W. G., 1946. Observations on soil algae. I. The ecology, size and taxonomy of British soil diatoms. Part II. New Phytologist 45: 56–110.Google Scholar
  114. Martin, M. H. & P. J. Coughtrey, 1982. Biological Monitoring of Heavy Metal Pollution: Land and Air. Applied Science Publishers, London: 475 pp.Google Scholar
  115. Martin-Jézéquel, V., M. Hildebrand & M. A. Brzezinski, 2000. Silicon metabolism in diatoms: implication for growth. Journal of Phycology 36: 821–840.Google Scholar
  116. Mayama, S. & A. Kuriyama, 2002. Diversity of mineral cell coverings and their formation processes: a review focused on the siliceous cell coverings. Journal of Plant Research 155: 289–295.Google Scholar
  117. McBride, S. A. & R. K. Edgar, 1998. Janus cells unveiled: frustular morphometric variability in Gomphonema angustatum. Diatom Research 13: 293–310.Google Scholar
  118. McFarland, B. H., B. H. Hill & W. T. Willingham, 1997. Abnormal Fragilaria spp. (Bacillariophyceae) in streams impacted by mine drainage. Journal of Freshwater Ecology 12: 141–149.Google Scholar
  119. McLaughlin, R. B., 1988. Teratological forms. The Microscope 36: 261–271.Google Scholar
  120. McMillan, M. & J. R. Johansen, 1988. Changes in valve morphology of Thalassiosira decipiens (Bacillariophyceae) cultured in media of four different salinities. British Phycological Journal 23: 307–316.Google Scholar
  121. Medley, C. N. & W. H. Clements, 1998. Responses of diatom communities to heavy metals in streams: the influence of longitudinal variation. Ecological Applications 8: 631–644.Google Scholar
  122. Miquel, P., 1892–1893. De la culture artificielle des diatomees. Le Diatomiste: 93–99, 121–128, 149–156, 165–172. In C.H.K., T.M., E.G.B., 1893. Reviews of foreign literature. Bulletin of the Torrey Botanical Club 20: 259–260.Google Scholar
  123. Mohabty, P., 1989. Effect of elevated levels of zinc on growth of Synechococcus 6301. Zentralblatt fuer Mikrobiologie 144: 531–536.Google Scholar
  124. Monod, J., 1942. Recherches sur la croissance des cultures bactériennes. Actualités scientifiques et industrielles. Annual Review of Microbiology 3: 3–71.Google Scholar
  125. Moore, J. W., 1981. Epipelic algal communities in a eutrophic northern lake contaminated with mine wastes. Water Research 15: 97–105.Google Scholar
  126. Morel, N. M. L., J. G. Rueter & F. M. M. Morel, 1978. Copper toxicity to Skeletonema costatum (Bacillariophyceae). Journal of Phycology 14: 43–48.Google Scholar
  127. Morel, F. M. M., R. J. M. Hudson & N. M. Price, 1991. Limitation of productivity by trace metals in the sea. Limnology and Oceanography 36: 1742–1755.Google Scholar
  128. Morin, S., 2003. Amélioration des techniques de bioindication diatomique et d’analyse des données, appliquées à la révélation des effets des pollutions à toxiques. ENITA de Bordeaux: 70 pp. + annexes.Google Scholar
  129. Morin, S., T. T. Duong, A. Dabrin, A. Coynel, O. Herlory, M. Baudrimont, F. Delmas, G. Durrieu, J. Schäfer, P. Winterton, G. Blanc & M. Coste, 2008a. Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France. Environmental Pollution 115(3): 532–542.Google Scholar
  130. Morin, S., M. Coste & P. B. Hamilton, 2008b. Scanning electron microscopy observations of deformities in small pennate diatoms exposed to high cadmium concentrations. Journal of Phycology 44: 1512–1518. doi:10.1111/j.1529-8817.2008.00587.x.Google Scholar
  131. Murakami, T. & M. Kasuya, 1993. Teratological variations of Gomphonema parvulum Kützing in a heavily polluted drainage channel. Diatom 8: 7–10.Google Scholar
  132. Nakamura, Y., 1990. Chemical environment for red tides due to Chattonella antiqua. Part 3. Roles of iron and copper. Journal of the Oceanographical Society of Japan 46: 84–95.Google Scholar
  133. Nassiri, Y., J. L. Mansot, J. Wéry, T. Ginsburger-Vogel & J. C. Amiard, 1997. Ultrastructural and electron energy loss spectroscopy studies of sequestration mechanisms of Cd and Cu in the marine diatom Skeletonema costatum. Archives of Environmental Contamination and Toxicology 33: 147–155.PubMedGoogle Scholar
  134. Nunes, M. L., E. Ferreira Da Silva & S. F. P. Almeida, 2003. Assessment of water quality in the Caima and Mau river basins (Portugal) using geochemical and biological indices. Water, Air, Soil Pollution 149: 227–250.Google Scholar
  135. Odum, E. P., 1985. Trends expected in stressed ecosystems. BioScience 35: 419–422.Google Scholar
  136. Okamoto, O. K., C. S. Asano, E. Aidar & P. Colepicolo, 1996. Effects of cadmium on growth and superoxide dismutase activity of the marine microalga Tetraselmis gracilis (Prasinophyceae). Journal of Phycology 32: 1–74.Google Scholar
  137. Overnell, J., 1975. The effects of heavy metals on photosynthesis and loss of cell potassium in two species of marine algae, Dunaliella tertiolecta and Phaedactylum tricornutum. Marine Biology 29: 99–103.Google Scholar
  138. Overnell, J., 1976. Inhibition of marine algal photosynthesis by heavy metals. Marine Biology 38: 335–342.Google Scholar
  139. Paasche, E., 1973a. Silicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) growth in a chemostat with silicate as limiting nutrient. Marine Biology 19: 117–126.Google Scholar
  140. Paasche, E., 1973b. Silicon and the ecology of marine plankton diatoms. II. Silicate-uptake kinetics in five diatom species. Marine Biology 19: 262–269.Google Scholar
  141. Palmer, T. C., 1910. Stauroneis terryi D. B. Ward. Proceedings of the Academy of Natural Sciences of Philadelphia 62: 456–459.Google Scholar
  142. Parkinson, J., Y. Brechet & R. Gordon, 1999. Centric diatom morphogenesis: a model based on a DLA algorithm investigating the potential role of microtubules. Biochimica et Biophysica Acta 1452: 89–102.PubMedGoogle Scholar
  143. Paulsson, M., B. Nyström & H. Blanck, 2000. Long-term toxicity of zinc to bacteria and algae in periphyton communities from the river Göta Älv, based on a microcosm study. Aquatic Toxicology 47: 243–257.Google Scholar
  144. Payne, C. D. & N. M. Price, 1999. Effects of cadmium toxicity on growth and elemental composition of marine phytoplankton. Journal of Phycology 35: 293–302.Google Scholar
  145. Peres-Weerts, F., 2000. Mise en évidence des effets toxiques des métaux lourds sur les diatomées par l’étude des formes tératogènes. Agence de l’Eau Artois Picardie, Douai: 24 pp.Google Scholar
  146. Perrein-Ettajani, H., J. C. Amiard, J. Haure & C. Renaud, 1999. Effets des métaux (Ag, Cd, Cu) sur la composition biochimique et compartimentation de ces métaux chez deux microalgues Skeletonema costatum et Tetraselmis suecica. Canadian Journal of Fisheries and Aquatic Sciences 56: 1757–1765.Google Scholar
  147. Peters, R. H., 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge: 329 pp.Google Scholar
  148. Petersen, J. B., 1915. Studier over danske aerofile alger. Det Kongelige Danske Videnskabernes Selskab Skrifter, Naturvidenskabelig og mathematisk 12: 271–380.Google Scholar
  149. Pinto, E., T. C. S. Sigaud-Kutner, M. A. S. Leitao, O. K. Okamoto, D. Morse & P. Colepicolo, 2003. Heavy metal-induced oxidative stress in algae. Journal of Phycology 39: 1008–1018.Google Scholar
  150. Pistocchi, R., F. Guerrini, V. Balboni & L. Boni, 1997. Copper toxicity and carbohydrate production in the microalgae Cylindrotheca fusiformis and Gymnodinium sp. European Journal of Phycology 32: 125–132.Google Scholar
  151. Pistocchi, R., M. A. Mormile, F. Guerrini, G. Isani & L. Boni, 2000. Increased production of extra- and intracellular metal-ligands in phytoplankton exposed to copper and cadmium. Journal of Applied Phycology 12: 469–477.Google Scholar
  152. Price, N. M. & F. M. M. Morel, 1990. Cadmium and cobalt substitution for zinc in a marine diatom. Nature 344: 658–660.Google Scholar
  153. Rai, L. C., J. P. Gaur & H. D. Kumar, 1981. Phycology and heavy metal pollution. Biological Reviews 56: 99–151.Google Scholar
  154. Rapport, D. J., H. A. Regier & T. C. Hutchinson, 1986. Ecosystem behaviour under stress. American Naturalist 125: 617–640.Google Scholar
  155. Raven, P. J., S. E. Eichhorn & R. F. Evert (eds), 2000. Biologie Végétale. De Boeck Université, Evrard: 944 pp.Google Scholar
  156. Riber, H. H. & R. G. Wetzel, 1987. Boundary-layer and internal diffusion effects on phosphorus fluxes in lake periphyton. Limnology and Oceanography 32: 1181–1194.CrossRefGoogle Scholar
  157. Rijstenbil, J. W., J. W. M. Derkesen, L. J. A. Gerringa, T. C. W. Poortvliet, A. Sandee, M. Van der Berg, J. Van Drie & J. A. Wijnholds, 1994. Oxidative stress induced by copper: defense and damage in the marine planktonic diatom Ditylum brightwellii (West) Grunow, grown in continuous cultures with high and low zinc levels. Marine Biology 119: 583–590.Google Scholar
  158. Rimet, F., L. Ector, A. Dohet & H. M. Cauchie, 2004. Impacts of fluoranthene on diatom assemblages and frustule morphology in indoor microcosms. Vie Milieu 54: 145–156.Google Scholar
  159. Rose, F. L. & C. E. Cushing, 1970. Periphyton: autoradiography of zinc-65 adsorption. Science 168: 576–577.PubMedGoogle Scholar
  160. Ross, R. & D. G. Mann, 1986. What is a diatom species? In Ricard, M. (ed.), Proceedings of the 8th International Diatom Symposium, Paris 1984. Koeltz, Koenigstein: 59–66.Google Scholar
  161. Round, F. E., 1957. The diatom community of some Bryophyta growing on sandstone. Journal of the Linnean Society of London 55: 657–661.Google Scholar
  162. Round, F. E., 1992. A re-investigation of some fragilarioid diatoms in the Provasoli/Guillard culture collection. Diatom Research 7: 303–311.Google Scholar
  163. Round, F. E., 1993. A Synedra (Bacillariophyta) clone after several years in culture. Nova Hedwigia Beiheft 106: 353–359.Google Scholar
  164. Round, F. E., R. M.. Crawford & D. G. Mann, 1990. The Diatoms. Biology and Morphology of the Genera. Cambridge University Press, Cambridge: 747 pp.Google Scholar
  165. Rueter, J. G., S. W. Chisholm & F. M. M. Morel, 1981. Effect of copper toxicity on silicic acid uptake and growth in Thalassiosira pseudonana. Journal of Phycology 17: 270–278.Google Scholar
  166. Rueter, J. G. Jr. & F. M. M. Morel, 1981. The interaction between zinc deficiency and copper toxicity as it affects the silicic acid uptake mechanisms in Thalassiosira pseudonana. Limnology and Oceanography 26: 67–73.Google Scholar
  167. Ruggiu, D., A. Luglio, A. Cattaneo & P. Panzani, 1998. Paleoecological evidence for diatom response to metal pollution in Lake Orta (N. Italy). Journal of Paleolimnology 20: 333–345.Google Scholar
  168. Saboski, E. M., 1977. Effects of mercury and tin on frustular ultrastructure of the marine diatom Nitzschia liebethruthii. Water, Air, Soil Pollution 8: 461–466.Google Scholar
  169. Sanders, J. G. & G. F. Riedel, 1998. Metal accumulation and impacts in phytoplankton. In Langston, W. J. & M. J. Bebianno (eds), Metal Metabolism in Aquatic Environments. Chapman and Hall, New York: 59–76.Google Scholar
  170. Say, P. J. & B. A. Whitton, 1980. Changes in flora down a stream showing a zinc gradient. Hydrobiologia 76: 255–262.Google Scholar
  171. Schindler, D. W., 1987. Detecting ecosystem response to anthropogenic stress. Canadian Journal of Fisheries and Aquatic Sciences 44: 6–25.Google Scholar
  172. Schmid, A. M., 1975. Über eine teratologisch entwickelte Synedra ulna. Nova Hedwigia 26: 431–433.Google Scholar
  173. Schmid, A. M., 1976. Morphologische und physiologische Untersuchungen an Diatomeen des Neusiedler Sees: II. Licht- und rasterelektronenmikroskopische Schalenanalyse der umweltabhängigen Zyklomorphose von Anomoeoneis sphaerophora (Kg.) Pfitzer. Nova Hedwigia 28: 309–351.Google Scholar
  174. Schmid, A. M., 1979. Influence of environmental factors on the development of the valve in diatoms. Protoplasma 99: 99–115.Google Scholar
  175. Schmid, A. M., 1980. Valve morphogenesis in diatoms: a pattern-related filamentous system in pennates and the effect of APM, colchicine and osmotic pressure. Nova Hedwigia 33: 811–847.Google Scholar
  176. Schmid, A. M. M., 1984. Wall morphogenesis in Thalassiosira eccentrica: comparison of auxospore formation and the effect of MT-inhibitors. In Mann, D. G. (ed.), Proceedings of the 7th International Diatom Symposium. Koeltz, Koenigstein: 47–70.Google Scholar
  177. Schmid, A. M. M., 1985. Centronella reicheltii Voigt—a very unusual diatom in the surface sediments of the Grabansee. In Danielopol, D. R., R. Schmidt & E. Schultze (eds), Contribution to the Paleolimnology of the Trumer Lakes (Salzburg) and the Lakes Mondsee, Attersee and Traunsee (Upper Australia). Österreichische Akademie der Wissenschaften: 65–78.Google Scholar
  178. Schmid, A. M. M., 1997. Intraclonal variation of tripolar pennate diatom “Centronella reicheltii” in culture: strategies of reversion to the bipolar Fragilaria-form. Nova Hedwigia 65: 27–45.Google Scholar
  179. Schmitt-Jansen, M. & R. Altenburger, 2005. Toxic effects of isoproturon on periphyton communities—a microcosm study. Estuarine, Coastal and Shelf Science 62: 539–545.Google Scholar
  180. Schultz, M. E., 1971. Salinity related polymorphism in the brackish-water diatom Cyclotella cryptica. Canadian Journal of Botany 49: 1285–1289.Google Scholar
  181. Schulz, D. & G. Wedemeyer, 1980. Colchicine effects on diatom cell-wall morphogenesis. In Ross, R. (ed.), Proceedings of the 6th International Diatom Symposium, Budapest. Koeltz, Koenigstein: 457–476.Google Scholar
  182. Shabana, E. F., I. A. Kobbia, A. E. Dowidar & S. A. El-Attar, 1986. Studies on the effects of some heavy metals on the biological activities of some phytoplankton species. III: effects of aluminium, chromium, lead and zinc on heterocyst frequency, nitrogen and phosphorus metabolism of Anabaena oryzae and Aulosira fertilissima. Egyptian Journal of Physiological Sciences 13: 73–94.Google Scholar
  183. Sicko-Goad, L. & E. F. Stoermer, 1979. A morphometric study of lead and copper effects on Diatoma tenue var. elongatum (Bacillariophyta). Journal of Phycology 15: 316–321.Google Scholar
  184. Sirota, G. R., J. F. Uthe, A. Streedharan, R. Matheson, G. J. Musial & K. Hamilton, 1983. Polynuclear aromatic hydrocarbons in Lobster (Homarus americanus) and in the vicinity of a coking facility. In Cooke, M. & A. J. Dennis (eds), Polynuclear Aromatic Hydrocarbons Formation, Metabolism and Measurement. Batelle Press, Columbus, Ohio: 1123–1136.Google Scholar
  185. Smith, M. A., 1983. The frustular and cytoplasmic fine structure of Skeletonema costatum (Bacillariophyta). Protoplasma 116: 14–23.Google Scholar
  186. Smith, T. & K. Manoylov, 2007. Diatom deformities from an acid mine drainage site at Friendship Hills National Historical Site, Pennsylvania. Journal of Freshwater Ecology 22: 521–527.Google Scholar
  187. Stauber, J. L. & T. M. Florence, 1987. Mechanism of toxicity of ionic copper and copper complexes to algae. Marine Biology 6: 93–97.Google Scholar
  188. Stauber, J. L. & T. M. Florence, 1990. Mechanisms of toxicity of zinc to the marine diatom Nitzschia closterium. Marine Biology 105: 519–524.Google Scholar
  189. Sterrenburg, F. A. S., 1973. Extreme malformation and the notion of species. Microscopy 32: 314–318.Google Scholar
  190. Stoermer, E. F., 1967. Polymorphism in Mastogloia. Journal of Phycology 3: 73–77.Google Scholar
  191. Stoermer, E. F. & N. A. Andresen, 2006. Atypical Tabularia in coastal Lake Erie, USA. In Ognjanova-Rumenova, N. & K. Manoylov (eds), Fossil and Recent Phycological Studies. Pensoft Publishers, Moscow: 9–16.Google Scholar
  192. Stoermer, E. F., H. S. Pankratz & C. C. Bowen, 1965. Fine structure of the diatom Amphipleura pellucida. II. Cytoplasmic fine structure and frustule formation. American Journal of Botany 52: 1067–1078.Google Scholar
  193. Subba Rao, D. V. & G. Wohlgeschaffen, 1990. Morphological variants of Nitzschia pungens Grunow f. multiseries Hasle. Botanica Marina 33: 545–550.CrossRefGoogle Scholar
  194. Sullivan, C. W., 1976. Diatom mineralization of silicic acid. I. Si(OH4) transport characteristics in Navicula pelliculosa. Journal of Phycology 12: 390–396.Google Scholar
  195. Sullivan, C. W., 1977. Diatom mineralization of silicic acid. II. Regulation of Si(OH4) transport rates during the cell cycle of Navicula pelliculosa. Journal of Phycology 13: 86–91.Google Scholar
  196. Sullivan, C. W., 1986. Silicification by diatoms. In Silicon Biochemistry. Ciba Foundation Symposium 121 Wiley Interscience, Chichester: 59–89.Google Scholar
  197. Sullivan, C. W. & B. E. Volcani, 1981. Silicon in the cellular metabolism of diatoms. In Simpson, T. L. & B. E. Volcani (eds), Silicon and Siliceous Structures in Biological Systems. Springer-Verlag, New York: 15–42.Google Scholar
  198. Sunda, W. G., 1988/1989. Trace metal interactions with marine phytoplankton. Biological Oceanography 6: 411–442.Google Scholar
  199. Sunda, W. G., 1994. Trace metal/phytoplankton interactions in the sea. In Bidoglio, G. & W. Stumm (eds), Chemistry of Aquatic Systems: Local and Global Perspectives. ECSC, EEC, EAEC, Brussels and Luxembourg: 213–217.Google Scholar
  200. Sunda, W. G. & R. R. L. Guillard, 1976. The relationship between cupric activity and the toxicity of copper phytoplankton. Journal of Marine Research 34: 511–529.Google Scholar
  201. Szabó, K., K. T. Kiss, G. Taba & E. Ács, 2005. Epiphytic diatoms of the Tisza River, Kisköre Reservoir and some oxbows of the Tisza River after the cyanide and heavy metal pollution in 2000. Acta Botanica Croatica 64: 1–46.Google Scholar
  202. Takamura, N., F. Kasai & M. M. Watanabe, 1989. Effects of Cu, Cd and Zn on photosynthesis of freshwater benthic algae. Journal of Applied Phycology 1: 39–52.Google Scholar
  203. Takano, H., 1986. A new diatom in the genus Fragilaria from shallow waters in Mikawa Bay, Japan. Bulletin of the Tokai Regional Fisheries Research Laboratory 120: 27–37.Google Scholar
  204. Takano, H. & K. Kikuchi, 1985. Anomalous cells of Nitzschia pungens Grunow found in eutrophic marine waters. Diatom 1: 18–20.Google Scholar
  205. Theriot, E. & E. F. Stoermer, 1981. Some aspects of morphological variation in Stephanodiscus niagarae. Journal of Phycology 17: 64–72.Google Scholar
  206. Theriot, E. & E. F. Stoermer, 1984a. Principal component analysis of character variation in Stephanodiscus niagarae Ehrenb.: morphological variation related to lake trophic status. In Mann, D. G. (ed.), Proceedings of the 7th International Diatom Symposium, Philadelphia, August 1982. Koeltz, Koenigstein: 97–111.Google Scholar
  207. Theriot, E. & E. F. Stoermer, 1984b. Principal component analysis of variation in Stephanodiscus rotula and S. niagarae. Systematic Botany 9: 53–59.Google Scholar
  208. Theriot, E. & E. F. Stoermer, 1984c. Principal component analysis of Stephanodiscus: observations on two new species from the Stephanodiscus niagarae complex. Bacillaria 7: 37–58.Google Scholar
  209. Theriot, E., H. Håkansson & E. F. Stoermer, 1988a. Morphometric analysis of Stephanodiscus alpinus (Bacillariophyceae) and its morphology as an indicator of lake trophic status. Phycologia 27: 485–493.Google Scholar
  210. Theriot, E., Y.-Z. Qi, J.-R. Yang & L.-Y. Ling, 1988b. Taxonomy of the diatom Stephanodiscus niagarae from a fossil deposit in Jingyu county, Jilin province, China. Diatom Research 3: 159–167.Google Scholar
  211. Thomas, W. H., J. T. Hollibaugh & D. L. R. Seibert, 1980. Effects of heavy metals on the morphology of some marine phytoplankton. Phycologia 19: 202–209.Google Scholar
  212. Tompkins, T. & D. W. Blinn, 1976. The effect of mercury on the growth rate of Fragilaria crotonensis Kitton and Asterionella formosa Hass. Hydrobiologia 49: 111–116.Google Scholar
  213. Torgan, L. C., A. A. H. Vieira, D. Groldo & C. Bahi dos Santos, 2004. Morphological irregularity and small cell size in Thalassiosira duostra maintained in culture. In Ricard, M. (ed.), Proceedings of the 8th International Diatom Symposium, Paris 1984. Koeltz, Koenigstein: 59–66.Google Scholar
  214. Torres, E., A. Cid, C. Fidalgo, P. Herrero & J. Abalde, 1997. Long chain class III metallothioneins as a mechanism of cadmium tolerance in the marine diatom Phaeodactylum tricornutum Bohlin. Aquatic Toxicology 39: 231–246.Google Scholar
  215. Torres, E., A. Cid, C. Herrero & J. Abalde, 2000. Effect of cadmium on growth, ATP content, carbon fixation and ultrastructure in the marine diatom Phaeodactylum tricornutum Bohlin. Water, Air, Soil Pollution 117: 1–14.Google Scholar
  216. Van de Vijver, B. & L. Beyens, 1997. The epiphytic diatom flora of mosses from Strømness Bay area, South Georgia. Polar Biology 17: 492–501.Google Scholar
  217. Van Donk, E. & D. O. Hessen, 1995. Reduced digestibility of UV-B stressed and nutrient-limited algae by Daphnia magna. Hydrobiologia 307: 147–151.Google Scholar
  218. Van Heurck, H., 1896. A Treatise on the Diatomaceae. Translated by W. E. Baxter. William Wesley & Son, London: 558 pp, 35 pls.Google Scholar
  219. Vymazal, J., 1987. Toxicity and accumulation of cadmium with respect to algae and cyanobacteria: a review. Toxicity Assessment 2: 387–415.Google Scholar
  220. Wendker, S. & U. Geissler, 1988. Investigations on valve morphology of two Nitzschiae lanceolatae. In Round, F. E. (ed.), Proceedings of the 9th International Diatom Symposium, Bristol. Biopress, Bristol: 469–480.Google Scholar
  221. Winner, R. W. & H. A. Owen, 1991. Seasonal variability in the sensitivity of freshwater phytoplankton communities to a chronic copper stress. Aquatic Toxicology 19: 73–88.Google Scholar
  222. Yang, J. R. & H. C. Duthie, 1993. Morphology and ultrastructure of teratological forms of the diatoms Stephanodiscus niagarae and S. parvus (Bacillariophyceae) from Hamilton Harbour (Lake Ontario, Canada). Hydrobiologia 269/270: 57–66.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Elisa Falasco
    • 1
    • 2
  • Francesca Bona
    • 1
  • Guido Badino
    • 1
  • Lucien Hoffmann
    • 2
  • Luc Ector
    • 2
  1. 1.DBAUUniversity of TurinTurinItaly
  2. 2.Department of Environment and Agro-biotechnologies (EVA)Public Research Center – Gabriel LippmannBelvauxLuxembourg

Personalised recommendations