Advertisement

Hydrobiologia

, Volume 622, Issue 1, pp 147–171 | Cite as

Application of remote sensing to site characterisation and environmental change analysis of North African coastal lagoons

  • M. H. Ahmed
  • B. M. El Leithy
  • J. R. Thompson
  • R. J. Flower
  • M. Ramdani
  • F. Ayache
  • S. M. Hassan
NORTH AFRICAN COASTAL LAGOONS

Abstract

This article describes the use of satellite imagery for identifying key environmental characteristics within three North African coastal lagoons (Merja Zerga, Morocco; Ghar El Melh, Tunisia and Lake Manzala, Egypt) and for detecting the major environmental changes within these environments. A combination of Landsat MSS, Landsat TM, Landsat ETM+ and ASTER imagery was acquired for the three sites for a period covering the last three decades (1972–2004). Following geometric correction and enhancement, the interpretation of the most recent image acquired for each of the three lagoons provides important insights into their current conditions. For Merja Zerga, these include the distribution of the largest channels which drain extensive inter-tidal mudflats and the two major depositional features associated with sources of freshwater. The distribution of marginal aquatic vegetation is highlighted as is the intensive use of the surrounding landscape for agriculture. Intensive agriculture around Ghar El Melh is also indicated. The influence of the Mejerda River, which was diverted away from the lagoon over 100 years ago, is shown to persist as a residual area of deltaic deposits in shallow water that has been eroded over time. Coastal processes including the direction of the alongshore sediment transport and the influence of engineering work associated with port construction can also be recognised. Within Lake Manzala, vegetated islands divide the lake into a series of sub-basins which can be clearly distinguished. The large influence of human activities within this lake can be identified and include reclamation for agriculture and the conversion of parts of the lake bed for fish farms. The historical images available for the three lagoons provide important insights into decadal scale changes, which have been greatest at Lake Manzala. Since the early 1970s large parts of the lake, in particular in the southwest where the shoreline has migrated northwards, have been reclaimed. Major engineering works, such as the El Salam Canal and road embankments, are shown to have resulted in significant lake change. The distribution of emergent vegetation within the lake has also changed. Classification of images for this lake into open water, vegetation and land enables the quantification of these changes. Between 1973 and 2003, the lake declined in area by approximately 50%. Changes at Merja Zerga over the last three decades include reconfiguration of the marine outlet and the expansion of the internal delta at the end of the Nador Canal. The images of this site clearly demonstrate the intensification of agriculture around the lagoon. The most marked changes evident within the images of Ghar El Melh concern the sand bars that separate the lagoon from the sea. Geomorphological processes operating within the coastal zone have resulted in the straightening of the bars with central sections migrating out towards the sea. Remote sensing is established as a promising application for detecting the quantitative surface cover changes in coastal lagoons and their near landscapes.

Keywords

Coastal lagoons North Africa Remote sensing Environmental change Image interpretation and classification 

Notes

Acknowledgments

The MELMARINA Project was financed by the EU Framework V INCO-Med Programme (Grant ICA3-CT2002-10009). The authors acknowledge the assistance of all the partner institutions in the project. Particular thanks are extended to Prof. A. El-Dessouki, Chairman of NARSS for facilitating the project work in Egypt.

References

  1. Abdeen, M. M., A. K. Thurmond, M. G. Abdelsalam & R. J. Stern, 2002. Use of TERRA ASTER band ratio images for geological mapping in arid regions: the Neoproterozoic Allaqi Sature, Egypt. Egyptian Journal of Remote Sensing and Space Science 5: 19–40.Google Scholar
  2. Abdel-Kader, A., 1982. Landsat Analysis of the Nile Delta, Egypt. MSc Thesis. University of Delaware, Newark.Google Scholar
  3. Ahmed, M. H. & B. El-Leithy, 2008. Utilization of satellite images for monitoring the environmental changes and development in Lake Mariout during the past four decades. Proceedings of the International Conference “Environment is a Must”, 10–12 June 2008, Alexandria.Google Scholar
  4. Ahmed, M. H. & N. S. Donia, 2007. Spatial investigation of water quality of Lake Manzala using GIS techniques. Egyptian Journal of Remote Sensing and Space Sciences 10: 63–86.Google Scholar
  5. Albright, T. P., T. G. Moorhouse & T. J. McNabb, 2004. The rise and fall of water hyacinth in Lake Victoria and the Kagera River Basin, 1989–2001. Journal of Aquatic Plant Management 42: 73–84.Google Scholar
  6. Ambrose, J. & P. Shah, 1990. The Importance of Remote Sensing and Mapping for Resource Management: A Case Study of Nepal. Integrated Surveys Section, Tomkcal Surveys Branch, Government of Nepal: 2161–2164.Google Scholar
  7. Ayache, F., J. R. Thompson, R. J. Flower, A. Boujarra, F. Rouatbi & H. Makina, 2009. Environmental characteristics, landscape history and pressures on three coastal lagoons in the Southern Mediterranean Region: Merja Zerga (Morocco), Ghar El Melh (Tunisia) and Lake Manzala (Egypt). Hydrobiologia. doi: 10.1007/s10750-008-9676-6.
  8. Calvo, S., G. Ciraolo & G. L. Loggia, 2003. Monitoring Posidonia oceanica meadows in a Mediterranean coastal lagoon (Stagnone, Italy) by means of neural network and ISODATA classification methods. International Journal of Remote Sensing 24: 2703–2716.CrossRefGoogle Scholar
  9. Christensen, E., J. Jensen, E. Ramsey & H. Mackey, 1988. Aircraft MSS data registration and vegetation classification for wetland change detection. International Journal of Remote Sensing 9: 23–38.CrossRefGoogle Scholar
  10. Cózar, A., C. M. García, J. A. Gálvez, S. A. Loiselle, L. Bracchini & A. Cognetta, 2005. Remote sensing imagery analysis of the lacustrine system of Ibera wetland (Argentina). Ecological Modelling 186: 29–41.CrossRefGoogle Scholar
  11. Curran, P. J., 1985. Principles of Remote Sensing. Longman, London.Google Scholar
  12. De Roeck, E. R., N. E. C. Verhoest, M. H. Miya, H. Lievens, O. Batelaan, A. Thomas & L. Brendonck, 2008. Remote sensing and wetland ecology: a South African case study. Sensors 8: 3542–3556.CrossRefGoogle Scholar
  13. Duning, L., H. Xinghen & Y. W. Xianli, 1996. Protection of littoral wetlands in North China, ecological and environmental characteristics. Ambio 25: 2–5.Google Scholar
  14. El-Quosy, D. E., 2006. Lake Manzala engineered wetland. Paper presented at the First International Conference: Environmental Change in Lakes, Lagoons and Wetlands of the Southern Mediterranean Region, 4–7 January 2006, Cairo.Google Scholar
  15. ERDAS, 1999. Earth Resources Data Analysis System, ERDAS Field Guide, 4th ed. ERDAS Inc., Atlanta.Google Scholar
  16. FAO, 2005. Country Profile: Egypt. Food and Agriculture Programme of the United Nations, Rome.Google Scholar
  17. Flower, R. J., 1998. Recent environmental change in North African wetland lakes: the CASSARINA Project and the application of remote sensing for ecosystem monitoring. In J. L. Fellous (ed), Satellite-Based Observation: A Tool for the Study of the Mediterranean Basin. Proceedings of an International Symposium at Tunis, 23–27 November 1998. Centre National d’Etudes Spatiale, Toulouse: 219–224.Google Scholar
  18. Flower, R. J., 2001. Change, stress, sustainability and aquatic ecosystem resilience in North African wetland lakes during the 20th century: an introduction to integrated biodiversity studies within the CASSARINA Project. Aquatic Ecology 35: 261–280.CrossRefGoogle Scholar
  19. Flower, R. J. & J. R. Thompson, 2009. An overview of integrated hydro-ecological studies in the MELMARINA Project: monitoring and modelling coastal lagoons—making management tools for aquatic resources in North Africa. Hydrobiologia. doi: 10.1007/s10750-008-9674-8.
  20. Flower, R. J., J. Dearing, N. Rose & P. G. Appleby, 1992. A palaeoecological assessment of recent environmental change in Moroccan wetlands. Würzburger Geographische Arbeiten 84: 17–44.Google Scholar
  21. Franklin, J., 1991. Land cover stratification using landsat thematic mapper data in Sahelian and Sudanian woodland and wooded grassland. Journal of Arid Environments 20: 141–163.Google Scholar
  22. Fuller, R. M., G. B. Groom, S. Mugisha, P. Ipulet, D. Pomeroy, A. Katende, R. Bailey & R. Ogutu-Ohwayo, 1998. The integration of field survey and remote sensing for biodiversity assessment: a case study in the tropical forests and wetlands of Sango Bay, Uganda. Biological Conservation 86: 379–391.CrossRefGoogle Scholar
  23. Gao, J. & Y. Liu, 2008. Mapping of land degradation from space: a comparative study of Landsat ETM + and ASTER data. International Journal of Remote Sensing 29: 4029–4043.CrossRefGoogle Scholar
  24. Graetz, R., 1990. Remote sensing of terrestrial ecosystem structure: an ecologist’s pragmatic view. In Hobbs, R. & H. Mooney (eds), Remote Sensing of Biosphere Functioning. Spring, New York: 5–30.Google Scholar
  25. Hall, F., D. Botkin, D. Strebel, K. Woods & S. Goetz, 1991. Large-scale patterns of forest succession as determined by remote sensing. Ecology 72: 628–640.CrossRefGoogle Scholar
  26. Hardisky, M. A., M. F. Gross & V. Klemas, 1986. Remote sensing of coastal wetlands. BioScience 36: 453–460.CrossRefGoogle Scholar
  27. Hess, L. L., J. M. Melack, E. M. L. M. Novo, C. C. F. Barbosa & G. M. Mary, 2003. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing of Environment 87: 404–428.CrossRefGoogle Scholar
  28. Hewson, R., C. Koch, A. Buchanan & A. Sanders, 2002. Detailed geological and regolith mapping in the Bangemall Basin, WA, using ASTER multi-spectral satellite-borne data. Communication in the Workshop on Mapping the Earth with ASTER, London.Google Scholar
  29. Hobbs, R., 1990. Remote sensing of spatial and temporal dynamics of vegetation. In Hobbs, R. & H. Mooney (eds), Remote Sensing of Biosphere Functioning. Spring, New York: 203–219.Google Scholar
  30. Howman, A., 1988. The Extrapolation of spectral signatures Illustrates’ Landsat’s potential to detect wetlands. Proceedings of ICARSS 1988 Symposium, Edinburgh, Scotland, September 13–16 1988: 537–539.Google Scholar
  31. Jensen, J., 1986. Introductory Digital Image Processing: A Remote Sensing Perspective. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  32. Jollineau, M. Y. & P. J. Howarth, 2008. Mapping an inland wetland complex using hyperspectral imagery. International Journal of Remote Sensing 29: 3609–3631.CrossRefGoogle Scholar
  33. Khedr, A. A., 1997. Aquatic macrophyte distribution in Lake Manzala, Egypt. International Journal of Salt Lake Research 5: 221–239.CrossRefGoogle Scholar
  34. Kraïem, M. M., L. Chouba, M. Ramdani, M. H. Ahmed, J. R. Thompson & R. J. Flower, 2009. The fish fauna of three North African lagoons: specific inventories, ecological status and production. Hydrobiologia. doi: 10.1007/s10750-008-9679-3.
  35. Lillesand, T., J. Chipman, D. Nagel, H. Reese, M. Bobo & R. Goldman, 1998. Upper Midwest gap analysis program image processing protocol. Report for U.S. Geological Survey Environment. Management Technical Centre, Onalaska, WI, EMTC 98-G001: 25.Google Scholar
  36. Lillesand, T. M., R. W. Kiefer & J. W. Chipman, 2008. Remote Sensing and Image Interpretation. Wiley, Hoboken, NJ.Google Scholar
  37. Marçal, A. R. S., J. S. Borges, J. A. Gomes & J. F. Pinto Da Costa, 2005. Land cover update by supervised classification of segmented ASTER images. International Journal of Remote Sensing 26: 1347–1362.CrossRefGoogle Scholar
  38. Maxwell, S. K., G. L. Schmidt & J. C. Storey, 2007. A multi-scale segmentation approach to filling gaps in Landsat ETM+ SLC-off images. International Journal of Remote Sensing 28: 5339–5356.CrossRefGoogle Scholar
  39. Milne, A., 1988. Change detection analysis using landsat imagery: a review of methodology. Proceedings of IGARSS 1988 Symposium, Edinburgh, Scotland, September 23–16 1988: 541–544.Google Scholar
  40. Milne, A. & A. O’Neill, 1990. Mapping and monitoring land cover in the Willandra Lakes World Heritage Region (New South Wales, Australia). International Journal of Remote Sensing 11: 2035–2049.CrossRefGoogle Scholar
  41. Müllerová, J., 2005. Use of digital aerial photography for sub-alpine vegetation mapping: a case study from the Krkonoscarone Mts., Czech Republic, Vegetatio 175: 259–272.Google Scholar
  42. Munyati, C., 2000. Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remote sensing image dataset. International Journal of Remote Sensing 21: 1787–1806.CrossRefGoogle Scholar
  43. NASA, 2001. A Shadow of a Lake: Africa’s Disappearing Lake Chad. Space Flight Center, National Aeronautics and Space Agency, Greenbelt, Maryland.Google Scholar
  44. NASA, 2005a. Lake Nasser and the New Valley. Goddard Space Flight Center, National Aeronautics and Space Agency, Greenbelt, Maryland.Google Scholar
  45. NASA, 2005b. Ichkeul Lake, Tunisia. National Aeronautics and Space Agency: Goddard Space Flight Center. Greenbelt, Maryland.Google Scholar
  46. Olmanson, L. G., S. M. Kloiber, M. E. Bauer & P. L. Brezonik, 2001. Image processing protocol for regional assessment of lake water quality. Water Resources Center Technical Report 14, University of Minnesota, St. Paul.Google Scholar
  47. Ozemi, S. L. & M. E. Bauer, 2004. Satellite remote sensing of wetlands. Wetland and Ecology Management 10: 381–402.CrossRefGoogle Scholar
  48. Petit, C. C. & E. F. Lambin, 2001. Integration of multi-scale remote sensing data for land cover change detection. International Journal of Geographic Information 15: 785–803.CrossRefGoogle Scholar
  49. Ramdani, M., R. J. Flower, N. Elkhiati, M. M. Kraïem, A. A. Fathi, H. H. Birks & S. T. Patrick, 2001. North African wetland lakes: Characterization of nine sites included in the Cassarina Project. Aquatic Ecology 35: 281–301.CrossRefGoogle Scholar
  50. Ramdani, M., N. Elkhiati, R. J. Flower, J. R. Thompson, L. Chouba, M. M. Kraiem, F. Ayache & M. H. Ahmed, 2009. Environmental influences on the qualitative and quantitative composition of phytoplankton and zooplankton in North African coastal lagoons. Hydrobiologia. doi: 10.1007/s10750-008-9678-4.
  51. Randazzo, G., D. J. Stanley, S. I. Di Geronimo & C. Amore, 1998. Human-induced sedimentological changes in Manzala Lagoon, Nile Delta, Egypt. Environmental Geology 36: 235–258.CrossRefGoogle Scholar
  52. Rasmussen, E. K., O. S. Petersen, J. R. Thompson, R. J. Flower & M. H. Ahmed, 2009a. Hydrodynamic-ecological model analyses of the water quality of Lake Manzala (Nile Delta, Northern Egypt). Hydrobiologia. doi: 10.1007/s10750-008-9683-7.
  53. Rasmussen, E. K., O. S. Petersen, J. R. Thompson, R. J. Flower, F. Ayache, M. Kraiem & L. Chouba, 2009b. Model analyses of the future water quality of the eutrophicated Ghar El Melh lagoon (Northern Tunisia). Hydrobiologia. doi: 10.1007/s10750-008-9681-9.
  54. Rawan, L. C. & J. C. Mars, 2001. Advances in lithologic mapping by using optical remote sensing measurements. Abstracts with programs. Geological Society of America 33: 347.Google Scholar
  55. Scheren, P. A. G. M., H. A. Zanting & A. M. C. Lemmens, 2000. Estimation of water pollution sources in Lake Victoria, East Africa: Application and elaboration of the rapid assessment methodology. Journal of Environmental Management 58: 235–248.CrossRefGoogle Scholar
  56. Schowengerdt, R. A., 2007. Remote Sensing: Models and Methods for Image Processing. Academic Press, New York.Google Scholar
  57. Sestini, G., 1976. Geomorphology of the Nile. In Sestini, G. & Misdorp, R (eds), Proceedings of Seminar on Nile Delta Sedimentology. Egyptian Academy of Scientific Research and Technology, Alexandria: 12–24.Google Scholar
  58. Shindell, D., 2007. Estimating the potential for twenty-first century sudden climate change. Philosophical Transactions of the Royal Society A—Mathematical Physical and Engineering Sciences 365: 2675–2694.CrossRefGoogle Scholar
  59. Simis, S. G., S. W. M. Peters & H. J. Gons, 2005. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnology & Oceanography 50: 237–245.CrossRefGoogle Scholar
  60. Stanley, D. J., 1988. Subsidence in the northeastern Nile Delta: Rapid rates, possible causes and consequences. Science 240: 497–500.PubMedCrossRefGoogle Scholar
  61. Stanley, D. J., 1996. Nile delta: Extreme case of sediment entrapment on a delta plain and consequent coastal land loss. Marine Geology 129: 189–195.CrossRefGoogle Scholar
  62. Stanley, D. J. & A. G. Warne, 1993. Nile Delta: Recent geological evolution and human impact. Science 260: 628–634.PubMedCrossRefGoogle Scholar
  63. Teng, W., 1990. AVHRR Monitoring of U.S. Crops during the 1988 drought. Photogrammetric Engineering and Remote Sensing 56: 1143–1146.Google Scholar
  64. Tennessee Valley Authority, 1997. Project Document: Lake Manzala Engineered Wetland. Tennessee Valley Authority, Knoxville, USA. prepared for United Nations Development Programme, New York.Google Scholar
  65. Thompson, J. R., R. J. Flower, M. Ramdani, F. Ayache, M. H. Ahmed, E. K. Rasmussen & O. S. Petersen, 2009. Hydrological characteristics of three North African coastal lagoons: insights from the MELMARINA project. Hydrobiologia. doi: 10.1007/s10750-008-9680-x.
  66. Turner, W., S. Spector, N. Gardner, M. Fladeland, E. Sterling & M. Steininger, 2003. Remote sensing for biodiversity and conservation. Trends in ecology and Evolution 18: 306–314.CrossRefGoogle Scholar
  67. Underwood, E., M. Mulitsch, J. Greenberg, M. Whiting, S. Ustin & S. Kefauver, 2006. Mapping invasive aquatic vegetation in the Sacramento-San Joaquin Delta using hyperspectral imagery. Environmental Monitoring and Assessment 121: 47–64.PubMedCrossRefGoogle Scholar
  68. UNEP, 2005. Africa’s Lakes, Atlas of Our Changing Environment. United Nations Environment Programme, Nairobi Kenya.Google Scholar
  69. Wilcox, K. L., S. A. Petrie, L. A. Maynard & S. W. Meyer, 2003. Historical distribution and abundance of Phragmites australis at Long Point, Lake Erie, Ontario. Journal of Great Lakes Research 29: 664–680.CrossRefGoogle Scholar
  70. World Bank/Ministry of Public Works and Water Resources, Egypt, 1992. Northern Sinai Agricultural Development Project Environmental Impact Assessment—Draft. Prepared by Euroconsult, Arnhem, The Netherlands with Pacer and Darwish Engineers, Cairo.Google Scholar
  71. Zahran, M. A., M. E. Abu Ziada, M. A. El-Demerdash & A. A. Khedr, 1988. Vegetation of Lake Manzala islands, Egypt. Mansoura Science Bulletin 15: 607–643.Google Scholar
  72. Zahran, M. A., M. A. El-Demerdash & I. A. Mashaly, 1990. Vegetation types of the deltaic Mediterranean coast of Egypt and their environment. Journal of Vegetation Science 1: 305–310.CrossRefGoogle Scholar
  73. Zhang, C., W. Li & D. Travis, 2007. Gaps-fill of SLC-off Landsat ETM+ satellite image using a geostatistical approach. International Journal of Remote Sensing 28: 5103–5122.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. H. Ahmed
    • 1
  • B. M. El Leithy
    • 1
  • J. R. Thompson
    • 2
  • R. J. Flower
    • 2
  • M. Ramdani
    • 3
  • F. Ayache
    • 4
  • S. M. Hassan
    • 1
  1. 1.Department of Marine SciencesNational Authority for Remote Sensing and Space SciencesCairoEgypt
  2. 2.Wetland Research Unit/Environmental Change Research Centre, UCL Department of GeographyUniversity College LondonLondonUK
  3. 3.Department of Zoology and Animal Ecology, Institute ScientifiqueUniversity Mohamed VRabatMorocco
  4. 4.Faculté des Lettres et Sciences Humaines de Sousse, Département de GéographieUniversité de SousseSousseTunisia

Personalised recommendations