Advertisement

Hydrobiologia

, Volume 622, Issue 1, pp 113–131 | Cite as

Environmental influences on the qualitative and quantitative composition of phytoplankton and zooplankton in North African coastal lagoons

  • M. Ramdani
  • N. Elkhiati
  • R. J. Flower
  • J. R. Thompson
  • L. Chouba
  • M. M. Kraiem
  • F. Ayache
  • M. H. Ahmed
NORTH AFRICAN COASTAL LAGOONS

Abstract

Within the framework of the international research project MELMARINA, seasonal dynamics of plankton communities in three North African coastal lagoons (Merja Zerga, Ghar El Melh, and Lake Manzala) were investigated. The sampling period extended from July 2003 to September 2004 with the aim of evaluating hydrological and other influences on the structure, composition and space-time development of these communities in each lagoon. Phytoplankton in Merja Zerga showed a quasi-permanent predominance of marine diatoms in the open sea station and in the marine inlet channel. Dinoflagellates were abundant in summer and early autumn in the marine inlet and extended into the central lagoon station. In Ghar El Melh, marine species (especially diatoms and dinoflagellates) dominated despite occasional winter inflows of freshwater. In Lake Manzala, freshwater species generally predominated and the planktonic communities were comparatively very diverse. Chlorophyceae contributed 39% of the total species recorded and diatoms and cyanophyceans were also common; the Dinophyceae, Euglenophyceae, Chrysophyceae and Cryptophyceae less so. Zooplankton communities in both Ghar El Melh and Merja Zerga were dominated by marine copepods. Rotifera, Copepoda, Ostracoda, and Cladocera were recorded in both lagoons as were meroplanktonic larvae of Polychaeta, Cirripedia, Mysidacea and Gastropoda and free living nematodes. Ghar El Melh was the more productive of these two lagoons with spring and early summer being the productive seasons. Zooplankton communities in Lake Manzala were generally dominated by rotifers and highest zooplankton abundances occurred in April (2003). Sampling stations near the marine inlets showed the highest diversity and the zooplankton communities showed considerable spatial variation within this large lagoon. The three lagoons represent very different water bodies contrasted strongly in terms of tidal effects and freshwater availability. Yet, there are some similarities in ecosystem structure. Space-time development of the plankton communities was similar especially in Merja Zerga and Ghar El Melh. Species abundances and specific diversities indicated that seasonal changes in salinity and nutrient concentrations were the main influential factors. Lake Manzala was the most productive lagoon and all the three sites supported toxic algal species. Relatively low plankton biomass in Merja Zerga and Ghar El Melh probably resulted from a combination of factors including highly episodic nutrient inputs, light suppression (by turbidity) and nutrient competition with benthic algae. Water quality variables were largely driven by the hydrological regime specific to each lagoon. Nutrient enrichment and, particularly for Lake Manzala, sea level rise threaten the sustainability of the planktonic ecosystems in all three lagoons.

Keywords

Coastal lagoons Water chemistry Plankton Hydrology Monitoring 

Notes

Acknowledgements

The MELMARINA Project was financed by the EU Framework V INCO-Med Programme under their Grant No. ICA3-CT2002-10009. The authors acknowledge the assistance of all the partner institutions involved in this project. The generous help provided by the enthusiastic field teams from each of the countries in North Africa, where the studies were conducted is also duly acknowledged. Several individuals, in particular, Dr A. Berraho and Dr. M. Serghini (INRH), Dr S. Duvail and Ms C. Chambers (UCL), Dr S. Zaghloul (NARSS), Mr M. Mansour (Merja Zerga), R. M’Rabet (INSTM) also deserve the authors’ gratitude for their special contributions to the success of this study.

Supplementary material

10750_2008_9678_MOESM1_ESM.pdf (55 kb)
Supplementary material 1 (PDF 56 kb)

References

  1. Abdel-Aziz, N. E. & S. M. Aboul-Ezz, 2004. The structure of zooplankton community in Lake Maryout, Alexandria, Egypt. Egyptian Journal of Aquatic Research 30(A): 160–170.Google Scholar
  2. Aboul-Ezz, S. M., 1995. Zooplankton of Lake Buroullus. Bulletin of the National Institute of Oceanography & Fisheries, Alexandria 21: 233–261.Google Scholar
  3. Aboul-Ezz, S. M. & A. M. Soliman, 2000. Zooplankton community in Lake Edku. Bulletin of the National Institute of Oceanography and Fisheries, Alexandria 26: 71–99.Google Scholar
  4. Ahmed, M. H., B. M. El Leithy, J. R. Thompson, R. J. Flower, M. Ramdani, F. Ayache & S. M. Hassan, 2009. Application of remote sensing to site characterisation and environmental change analysis of North African coastal lagoons. Hydrobiologia. doi: 10.1007/s10750-008-9682-8.
  5. American Public Health Association (APHA), 1995. Standard methods for the examination of water and wastewater, 16th ed. American Public Health Association, Washington, DC.Google Scholar
  6. Ayache, F., J. R. Thompson, R. J. Flower, A. Boujarra, F. Rouatbi & H. Makina, 2009. Environmental characteristics, landscape history and pressures on three coastal lagoons in the Southern Mediterranean Region: Merja Zerga (Morocco), Ghar El Melh (Tunisia) and Lake Manzala (Egypt). Hydrobiologia. doi: 10.1007/s10750-008-9676-6.
  7. Ayadi, H., O. Abid, A. Sellami Kamoun, R. Amdouni, A. Bouain, T. Sime-Ngando & C. Amblard, 2002. Application of the Principal Components Analysis to the study of the phytoplankton and the physicochemical descriptors of a saltwater marsh. Littoral 2002, the Changing Coast. EUROCOAST/EUCC, Porto – Portugal.Google Scholar
  8. Bautista, B. & R. P. Harris, 1992. Copepod gut contents, ingestion rates and grazing impact on phytoplankton in relation to size structure of zooplankton and phytoplankton during a spring bloom. Marine Ecology Progress Series 82: 41–50.CrossRefGoogle Scholar
  9. Benrejeb-Jenhani, A. M. & S. Romdhane, 2002. Impact des perturbations anthropiques sur l’évolution du phytoplancton de la lagune de Boughrara, (Tunisie). Bulletin Institut National Sciences et Technplogie de la Mer, Salammbô 29: 65–75.Google Scholar
  10. Birks, H. H., S. M. Peglar, I. Boomer, R. J. Flower, M. Ramdani, P. G. Appleby, A. E. Bjune, S. T. Patrick, M. M. Kraiem, A. A. Fathi & H. M. A. Abdelzaher, 2001. Palaeolimnological responses of nine North African Lakes to recent environmental changes and human impacts detected by macrofossil and pollen analyses. Aquatic Ecology 35: 405–430.CrossRefGoogle Scholar
  11. Borja, A., 2005. The European water framework directive: a challenge for nearshore, coastal and continental shelf research. Continental Shelf Research 25: 1768–1783.CrossRefGoogle Scholar
  12. Daly Yahia, M. N. & M. S. Romdhane, 1994. Contribution à la connaissance des cycles saisonniers des Copépodes pélagiques (Mer de Bou Grara). Bulletin de la Société des Sciences Naturelles Tunis 10: 1–10.Google Scholar
  13. Delgado, M., 1990. Phytoplankton distribution along the Spanish coast of the Alboran Sea. Sciecias del Mar Barcelona 54: 169–178.Google Scholar
  14. Delgado, M. & J. M. Fortuna, 1991. Atlas de fitoplancton del Mar Mediterraneo. Sciecias del Mar Barcelona 55.Google Scholar
  15. Dolédec, S. & D. Chessel, 1989. Rythmes saisonniers et composantes stationnelles en milieu aquatique II- Prise en compte et élimination d’effets dans un tableau faunistique. Acta Œcologica, Œcologia Generalis 10: 207–232.Google Scholar
  16. Dowidar, N. & A. El-Maghraby, 1970. The neritic zooplankton of the south eastern Mediterranean at Alexandria. I. Distribution and ecology of zooplankton organisms with special reference to Copepoda. Bulletin of the National Institute of Oceanography & Fisheries, Alexandria 1: 225–273.Google Scholar
  17. Dussart, B., 1969. Les Copépodes des eaux continentales. Tome II, Cyclopoïdes et Biologie quantitative. CNRS Publisher. Editions N. Boubée & Cie, Paris.Google Scholar
  18. El-Hawary, M. A., 1960. The zooplankton of the Egyptian lakes. A preliminary study on the zooplankton of Lake Maryut and Lake Edku. Institute of Hydrobiology & Fisheries, Alexandria. Notes & Memoires 52: 1–12.Google Scholar
  19. El-Naggar, M. E., S. A. Shaaban-Dessouki, M. I. Abdel-Hamid & E. M. Aly, 1997. Effect of treated sewage on the water quality and phytoplankton populations of Lake Manzala (Egypt) with emphasis on biological assessment of water quality. New Microbiologica 20: 253–276.PubMedGoogle Scholar
  20. El-Sherif, Z. M. & S. Gharib, 2001. Spatial and temporal patterns of phytoplankton communities in Manzala Lagoon. Bulletin Institute Oceanography & Fisheries, Alexandria 27: 217–239.Google Scholar
  21. El-Sherif, Z. M. & S. M. Aboul Ezz, 1988. Preliminary study on phytoplankton-zooplankton relationship in Lake Burollus, Egypt. Bulletin Institute Oceanography & Fisheries, Alexandria 14: 23–30.Google Scholar
  22. Fathi, A. A., H. M. A. Abdelzaher, R. J. Flower, M. Ramdani & M. M. Kraiem, 2001. Phytoplankton communities in North African wetland lakes: the CASSARINA Project. Aquatic Ecology 35: 303–318.CrossRefGoogle Scholar
  23. Flower, R. J., 2001. Change, Stress, Sustainability and Aquatic ecosystem Resilience ln tlorth African wetland lakes during the 20th century: An introduction to integrated biodiversity studies within the CASSARINA Project. Aquatic Ecology 35: 261–280.CrossRefGoogle Scholar
  24. Flower, R. J. & J. R. Thompson, 2009. An overview of integrated hydro-ecological studies in the MELMARINA Project: monitoring and modelling coastal lagoons—making management tools for aquatic resources in North Africa. Hydrobiologia. doi: 10.1007/s10750-008-9674-8.
  25. Flower, R. J., S. Dobinson, M. Ramdani, M. M. Kraiem, C. Ben Hamza, A. A. Fathi, H. M. A. Abdelzaher, P. G. Appleby, H. H. Birks, J. A. Lees, E. Shilland & S. T. Patrick, 2001. Recent environmental change in North African wetland lakes: diatom and other stratigraphic evidence from nine sites in the CASSARINA Project. Aquatic Ecology 35: 369–388.CrossRefGoogle Scholar
  26. Flower, R. J., P. G. Appleby, J. R. Thompson, M. H. Ahmed, M. Ramdani, L. Chouba, N. Rose, R. Rochester, F. Ayache, M. M. Kraiem, N. Elkhiati, S. El Kafrawy, H. Yang & E. K. Rasmussen, 2009. Sediment distribution and accumulation in lagoons of the Southern Mediterranean region (the MELMARINA Project) with special reference to environmental change and aquatic ecosystems. Hydrobiologia. doi: 10.1007/s10750-008-9677-5.
  27. Fraikech, M., A. Berraho, M. Ramdani, A. Chafik, M. Serghini & A. Moukrim, 2005. Evolution spatio-temporelle des dinoflagellés dans la baie d’Agadir, Maroc. Marine Life 15: 19–27.Google Scholar
  28. Gamito, S., J. Gilaberyt, C. M. Diego & A. Perez-Ruzafa, 2005. Effects of changing environmental conditions on lagoon ecology. In Gonenc, I. E. & J. P. Wolfin (eds), Coastal Lagoons. CRC Press, Boca Raton: 193–230.Google Scholar
  29. Gharib, S. M. & S. M. Soliman, 1998. Some water characteristics and phyto-zooplankton relationship in Lake Edku (Egypt) and adjacent sea. Bulletin Faculty of Sciences, Alexandria 38: 25–44.Google Scholar
  30. Grasshoff, K., 1976. Filtration and Storage. In Grasshoff, K. (ed.), Methods of Sea Water Analysis. Verlag Chemie, Weinheim and New York: 21–30.Google Scholar
  31. Guerguess, Sh. K., 1993. Distribution of some rotifers in the Egyptian Inland waters. Bulletin Institute Oceanography & Fisheries, Alexandria 19: 249–275.Google Scholar
  32. Hallegraeff, G. M., D. M. Anderson & M. B. Cembella (eds), 1995. Manual on harmful marine microalgae. UNESCO, Paris.Google Scholar
  33. Harris, R. P., 1982. Comparison of the feeding behavior of Calanus and Pseudocalanus in two experimentally manipulated enclosed systems. Journal of the Marine Biology Association, UK 62: 71–91.Google Scholar
  34. Humborg, C., V. Ittekot, A. Cociasu & B. von Bodungen, 1997. Effect of Danube river dam on Black Sea biogeochemistry and ecosystem structure. Nature 386: 385–388.CrossRefGoogle Scholar
  35. Hutchinson, G. E., 1967. A Treatise on Limnology and Limnoplankton. Vol. II-Limnological Botany. Wiley, New York.Google Scholar
  36. Hutchinson, G. E., 1975. A Treatise on Limnology. Vol. III- Limnological Botany. Wiley, New York.Google Scholar
  37. Khalifa, N. & A. Mageed, 2002. Some ecological aspects on the zooplankton in Lake Manzala, Egypt. Journal of Zoology 38: 293–307.Google Scholar
  38. Khalil, M., 1990. Plankton and primary productivity of Lake Manzala, Egypt. Hydrobiologia 196: 201–207.CrossRefGoogle Scholar
  39. Khalil, M. & E. A. Salib, 1986. Effects of some water quality parameters on fish composition and productivity in Lake Manzala, Egypt. Proceedings of the Zoology Society of London 12: 101–109.Google Scholar
  40. Kraïem, M. M., C. Ben Hamza, M. Ramdani, A. A. Fathy, H. M. A. Abdelzaher & R. J. Flower, 2001. Some observations on the age and growth of the thin-lipped Grey Mullet, Liza ramada (Pisces, Mugilidae) in three North African wetland lakes: Merja Zerga (Morocco), Garâat Ichkeul (Tunisia) and Edku lake (Egypt). Aquatic Ecology 35: 335–345.CrossRefGoogle Scholar
  41. Kraïem, M. M., L. Chouba, M. Ramdani, M. H. Ahmed, J. R. Thompson & R. J. Flower, 2009. The fish fauna of three North African lagoons: specific inventories, ecological status and production. Hydrobiologia. doi: 10.1007/s10750-008-9679-3.
  42. Mageed, A. A., 2006. Spatio-temporal variations of zooplankton community in the hypersaline lagoon of Bardawil, North Sinai–Egypt. Egyptian Journal of Aquatic Research 32: 168–183.Google Scholar
  43. Meininger, P. L. & W. C. Mullie, 1981. Egyptian wetlands as threatened wintering areas for water birds. Sandgrouse 3: 62–77.Google Scholar
  44. Morgan, N. C. & V. Boy, 1980. An ecological survey of standing water in North West Africa: I: rapid classification. Biology Conservation 24: 81–101.Google Scholar
  45. Mostafa, S. A., M. A. Hewedy, H. E. Touliabah, S. M. Ashour & S. A. Abdallah, 2003. Comparative study among microflora in El-Manzala Lake water and Rashid (Rosetta) estuary of Nile River, Egypt. Pakistan Journal of Biological Sciences 6: 671–679.CrossRefGoogle Scholar
  46. Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimca Acta 27: 31–36.CrossRefGoogle Scholar
  47. Parsons, T. R., Y. Maita & C. M. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater and Analysis. Pergamon Press, New York.Google Scholar
  48. Paterson, M., 1993. The distribution of micro-crustacea in the littoral zone of a freshwater lake. Hydrobiologia 263: 173–183.CrossRefGoogle Scholar
  49. Radwan, S. & B. Popiolek, 1989. Percentage of rotifers in spring zooplankton in lakes of different trophy. Hydrobiologia 186(187): 235–238.CrossRefGoogle Scholar
  50. Ramdani, M., 1988. Les eaux stagnantes au Maroc: études biotypologique et biogéographique du zooplancton. Travaux Institut Scientifique Rabat, Série Zooloie 43: 1–40.Google Scholar
  51. Ramdani, M., N. Elkhiati, R. J. Flower, M. M. Kraiem, A. A. Fathi, H. H. Birks & S. T. Patrick, 2001a. Open water zooplankton communities in North African wetland lakes: the CASSARINA Project. Aquatic Ecology 35: 319–333.CrossRefGoogle Scholar
  52. Ramdani, M., R. J. Flower, N. Elkhiati, H. H. Birks, M. M. Kraiem & A. A. Fathi, 2001b. Zooplankton (Cladocera-Ostracoda) Chironomidae and other benthic faunal remains in sediment cores from nine wetland lakes: the Cassarina Project. Aquatic Ecology 35: 389–403.CrossRefGoogle Scholar
  53. Ramdani, M., R. J. Flower, N. Elkhiati, M. M. Kraiem, A. A. Fathi, H. H. Birks & S. T. Patrick, 2001c. North African wetland lakes: characterization of nine sites included in the CASSARINA Project. Aquatic Ecology 35: 281–302.CrossRefGoogle Scholar
  54. Rasmussen, E. K., O. S. Petersen, J. R. Thompson, R. J. Flower & M. H. Ahmed, 2009a. Hydrodynamic-ecological model analyses of the water quality of Lake Manzala (Nile Delta, Northern Egypt). Hydrobiologia. doi: 10.1007/s10750-008-9683-7.
  55. Rasmussen, E. K., O. S. Petersen, J. R. Thompson, R. J. Flower, F. Ayache, M. Kraiem & L. Chouba, 2009b. Model analyses of the future water quality of the eutrophicated Ghar El Melh lagoon (Northern Tunisia). Hydrobiologia. doi: 10.1007/s10750-008-9681-9.
  56. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  57. Ricard, M., 1987. Atlas du Phytoplancton Marin, Diatomophycées, Vol. II. CNRS, Paris.Google Scholar
  58. Romdhane, M. S., H. C. Eilertsen, O. Kefi Daly Yahia & M. N. Daly Yahia, 1998. Toxic Dinoflagellate blooms in Tunisia lagoons: Causes, and consequences for aquaculture. In Reguera, B., J. Blance, M. L. Fernandez & T. Wyatt (eds), Harmful Algae. Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, Paris: 80–83.Google Scholar
  59. Rougier, C. & T. Lam Hoai, 1997. Biodiversity through two groups of micro zooplankton in a coastal lagoon (Etang de Thau, France). Vie & Milieu 47: 387–394.Google Scholar
  60. Saad, M. A. H., S. R. McComas & S. J. Eisenreich, 1985. Metals and chlorinated hydrocarbons in surficial sediments of three Nile Delta lakes, Egypt. Water Air Soil Pollution 24: 27–39.CrossRefGoogle Scholar
  61. Sabae, S. Z., 2006. Spatial and temporal variations of saprophytic bacteria, faecal indicators and the nutrient. Cycle bacteria in Lake Bardawil, Egypt. International Journal of Agriculture & Biology 8: 178–185.Google Scholar
  62. Sakka Hlaili, A., M. A. Chikhaoui, B. El-Grami & H. Hadj Mabrouk, 2003. Variation hiverno-estivale de la communauté phytoplanctonique de la lagune de Bizerte en milieux naturel et fertilisé en nutriments. Revue Faculty Science Bizerte 2: 37–49.Google Scholar
  63. Samaan, A. A., 1977. Distribution of zooplankton in Lake Edku. Bulletin Institute Oceanography & Fisheries, Cairo 6: 157–196.Google Scholar
  64. Samaan, A. A. & R. R. Aleem, 1972. The Ecology of zooplankton in Lake Maryut. Bulletin Institute Oceanography & Fisheries, Cairo 4: 234–273.Google Scholar
  65. Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman & Hall publishers, London.Google Scholar
  66. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.CrossRefGoogle Scholar
  67. Shaheen, A. H. & S. F. Yosef, 1987. The effect of the cessation of the Nile flood on the hydrographic features of Lake Manzala, Egypt. Archive für Hydrobiologie 84: 339–367.Google Scholar
  68. Simis, S. G. H., S. W. M. Peters & H. J. Gons, 2005. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnology and Oceanography 50: 237–245.CrossRefGoogle Scholar
  69. Souissi, S., O. Daly. Yahia-Kéfi & M. N. Daly. Yahia, 2000. Spatial characterisation of nutrient dynamics in the Bay of Tunis (south-western Mediterranean) using multivariate analyses: consequences for phyto- and zooplankton distribution. Journal Plankton Research 22: 2039–2059.CrossRefGoogle Scholar
  70. Sournia, A., 1986. Atlas du Phytoplancton Marin. I: Cyanophycées, Dictyochophycées, Dinophycées, Raphidophycées. CNRS Editions, Paris.Google Scholar
  71. Stanley, D. J. & A. G. Warne, 1994. Nile Delta: recent geological evolution and human impact. Science 260: 628–634.CrossRefGoogle Scholar
  72. Talling, J. F., 1976. Phytoplankton: composition, development and productivity. In Rzoska, J. (ed.), The Nile, Biology of an Ancient River. Monographiae Biologia 29. Junk, The Hague: 385–402.Google Scholar
  73. Talling, J. F. & J. Lemoalle, 1998. Ecological dynamics of tropical inland waters. Cambridge University Press, Cambridge.Google Scholar
  74. Thompson, J. R., R. J. Flower, M. Ramdani, F. Ayache, M. H. Ahmed, E. K. Rasmussen & O. S. Petersen, 2009. Hydrological characteristics of three North African coastal lagoons: insights from the MELMARINA project. Hydrobiologia. doi: 10.1007/s10750-008-9680-x.
  75. Tomas, C. R., 1997. Identifying Marine Phytoplankton. Academic Press, New York.Google Scholar
  76. Tregouboff, G. & M. Rose, 1957. Manuel de planctonologie Méditerranéenne. CNRS, Paris.Google Scholar
  77. Zaghloul, F. & N. Hussein, 2000. Impact of pollution on phytoplankton communities’ structure in Lake Edku, Egypt. Bulletin Institute Oceanography & Fisheries, Alexandria 26: 297–318.Google Scholar
  78. Zakaria, H. Y., M. H. Ahmed & R. J. Flower, 2007. Environmental assessment of spatial distribution of zooplankton community in Lake Manzalah, Egypt. Acta Adriatica 48: 161–172.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. Ramdani
    • 1
  • N. Elkhiati
    • 2
  • R. J. Flower
    • 3
  • J. R. Thompson
    • 3
  • L. Chouba
    • 4
  • M. M. Kraiem
    • 4
  • F. Ayache
    • 5
  • M. H. Ahmed
    • 6
  1. 1.Department of Zoology & Animal Ecology, Institut ScientifiqueUniversity Mohamed VRabat AgdalMorocco
  2. 2.Faculté des Sciences, BiologieUniversité Hassan II Ain ChockCasablancaMorocco
  3. 3.UCL Department of Geography, Environmental Change Research Centre/Wetland Research UnitUniversity College LondonLondonUK
  4. 4.INSTMSalammbo, TunisTunisia
  5. 5.Department de Geography, Faculté des Lettres & Sciences HumainesUniversite de SousseSousseTunisia
  6. 6.Department of Marine ResourcesNational Authority for remote sensing and Space SciencesCairoEgypt

Personalised recommendations