Hydrobiologia

, Volume 624, Issue 1, pp 13–27

Exploration of the influence of global warming on the chironomid community in a manipulated shallow groundwater system

  • Guillaume Tixier
  • Kevin P. Wilson
  • D. Dudley Williams
Primary research paper

Abstract

Uncertainty about predicted effects of global warming on freshwater ecosystems led us to manipulate the thermal regime of a shallow groundwater ecosystem. The study area was separated into a control and treatment block using a sheet-metal groundwater divide to a depth of 1 m. Temperatures were increased according to General Circulation Model (GCM) projections for Southern Ontario, Canada. We examined the response of the groundwater chironomid community during pre-manipulation, manipulation and recovery periods. We found that warming decreased the total abundance of chironomids whereas no significant change in taxonomic richness was apparent. Interestingly, taxon composition changed markedly during both the manipulation and the recovery period. Whereas Heterotrissocladius disappeared during the manipulation in the treatment block, other coldstenothermal taxa such as Micropsectra, Parametriocnemus and Heleniella remained unaffected. Conversely, Corynoneura, Polypedilum and Thienemannia gracilis disappeared but were not reported as coldstenothermal. The chironomid community composition in the system changed from a Heterotrissocladius, Brillia, and Tanytarsini-dominated community during the pre-manipulation towards one dominated by Parametriocnemus, Polypedilum, Orthocladius/Cricotopus and Corynoneura during the recovery. Although increased temperature had a strong effect, chironomid occurrence was also influenced by a number of other abiotic variables, such as dissolved oxygen, depth, ammonia concentration and TDS (Total dissolved solids).

Keywords

Global warming Chironomids Groundwater Springbrook Ecosystem-manipulation Species–environment relationships 

References

  1. Adams, G. A. & D. H. Wall, 2000. Biodiversity above and below the surface of soils and sediments: linkages and implications for global change. Bioscience 50: 1043–1048.CrossRefGoogle Scholar
  2. Araújo, M. B., R. G. Pearson, W. Thuiller & M. Erhard, 2005. Validation of species–climate impact models under climate change. Global Change Biology 11: 1504–1513.CrossRefGoogle Scholar
  3. Baker, M. A., C. N. Dahm & H. M. Valett, 2000. Anoxia, anaerobic metabolism, and biogeochemistry of the stream-water-groundwater interface. In Jones, J. B. & P. J. Mulholland (eds), Streams and Ground Waters. Academic Press, Boston: 259–283.CrossRefGoogle Scholar
  4. Baulch, H. M., D. W. Schindler, M. A. Turner, D. L. Findlay, M. J. Paterson & R. D. Vinebrooke, 2005. Effects of warming on benthic communities in a boreal lake: implications of climate change. Limnology and Oceanography 50: 1377–1392.CrossRefGoogle Scholar
  5. Brooks, S. J. & H. J. B. Birks, 2001. Chironomid-inferred air temperatures from Late-glacial and Holocene sites in north-west Europe: progress and problems. Quaternary Science Reviews 20: 1723–1741.CrossRefGoogle Scholar
  6. Burgmer, T., H. Hillebrand & M. Pfenninger, 2007. Effects of climate driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151: 93–103.PubMedCrossRefGoogle Scholar
  7. Covich, A. P., S. C. Fritz, P. J. Lamb, R. D. Marzolf, W. J. Matthews, K. A. Poiani, E. E. Prepas, M. B. Richman & T. C. Winter, 1997. Potential effects of climate change on aquatic ecosystems of the Great Plains of North America. Hydrological Processes 11: 993–1021.CrossRefGoogle Scholar
  8. Danks, H. V. & D. D. Williams, 1991. Arthropods of springs, with particular reference to Canada: synthesis and needs for research. Memoirs of the Entomological Society of Canada 155: 203–217.Google Scholar
  9. Daufresne, M., M. C. Roger, H. Capra & N. Lamouroux, 2003. Long-term changes within the invertebrate and fish communities of the upper Rhône River: effects of climatic factors. Global Change Biology 10: 124–140.CrossRefGoogle Scholar
  10. Davis, A. J., L. S. Jenkinson, J. H. Lawton, B. Shorrocks & S. Wood, 1998. Making mistakes when predicting shifts in species range in response to global warming. Nature 391: 783–786.PubMedCrossRefGoogle Scholar
  11. Franken, R. J. M., R. G. Storey & D. D. Williams, 2001. Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream. Hydrobiologia 444: 183–195.CrossRefGoogle Scholar
  12. Freeze, R. A. & J. A. Cherry, 1979. Groundwater. Prentice-Hall, Inc, New Jersey: 23–24.Google Scholar
  13. Gathmann, F. O. & D. D. Williams, 2006. Insect emergence in Canadian coldwater springs: spatial and temporal patterns, and species–environment relationships. International Journal of Limnology 42: 143–156.CrossRefGoogle Scholar
  14. Hengeveld, H. G., 2000. Projections for Canada’s Climate Future: A Discussion of Recent Simulations with the Canadian Global Climate Model. Climate Change Digest Special Edition (CCD 00–01). Meteorological Service of Canada, Environment Canada, Downsview, Ontario.Google Scholar
  15. Hogg, I. D. & D. D. Williams, 1996. Response of stream invertebrates to a global-warming thermal regime: an ecosystem-level manipulation. Ecology 77: 395–407.CrossRefGoogle Scholar
  16. Hogg, I. D., D. D. Williams, J. M. Eadie & S. A. Butt, 1995. The consequences of global warming for stream invertebrates: a field simulation. Journal of Thermal Biology 20: 199–206.CrossRefGoogle Scholar
  17. Hubbs, C., 1995. Perspectives: springs and spring runs as unique aquatic systems. Copeia 4: 989–991.CrossRefGoogle Scholar
  18. Hughes, L., 2000. Biological consequences of global warming: is the signal already apparent? Trends in Ecology and Evolution 15: 56–61.PubMedCrossRefGoogle Scholar
  19. IPCC, 2001. Climate change, 2001. Synthesis report. Summary of policymakers approved in detail at IPCC plenary XVIII Wembley, United Kingdom 24–29 September 2001. http://www.ipcc.ch/pub/un/syreng/spm.pdf.
  20. Jiang, L. & A. Kulczycki, 2004. Competition, predation and species responses to environmental change. Oïkos 106: 217–224.Google Scholar
  21. Kennedy, A. D., 1994. Simulated climate change: a field manipulation study of polar microarthropod community response to global warming. Ecography 17: 131–140.CrossRefGoogle Scholar
  22. Klanderud, K. & O. Totland, 2005. Simulated climate change altered dominance hierarchies and diversity of an Alpine biodiversity hotspot. Ecology 86: 2047–2054.CrossRefGoogle Scholar
  23. Lamberti, G. A. & V. H. Resh, 1983. Geothermal effects on stream benthos: separate influences of thermal and chemical components on periphyton and macroinvertebrates. Canadian Journal of Fisheries and Aquatic Sciences 40: 1995–2009.CrossRefGoogle Scholar
  24. Magnusson, J. J., K. E. Webster, R. A. Assel, C. J. Bowser, P. J. Dillon, J. G. Eaton, H. E. Evans, E. J. Fee, R. I. Hall, L. R. Mortsch, D. W. Schindler & F. H. Quinn, 1997. Potential effects of climate changes on aquatic systems: Laurentian Great Lakes and Precambrian shield region. Hydrological Processes 11: 825–871.CrossRefGoogle Scholar
  25. Mason, W. T., 1973. An Introduction to the Identification of Chironomid Larvae. U. S. Environmental Protection Agency, Ohio.Google Scholar
  26. McCarty, J. P., 2001. Ecological consequences of recent climate change. Conservation Biology 15: 320–331.CrossRefGoogle Scholar
  27. Nyman, M., A. Korhola & S. J. Brooks, 2005. The distribution and diversity of Chironomidae (Insecta: Diptera) in western Finnish Lapland, with special emphasis on shallow lakes. Global Ecology and Biogeography 14: 137–153.CrossRefGoogle Scholar
  28. Olander, H., A. Korhola & T. Blom, 1997. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for paleotemperature reconstructions. Journal of Paleolimnology 18: 45–59.CrossRefGoogle Scholar
  29. Orendt, C., 2000. The chironomid communities of woodland springs and spring brooks severely endangered and impacted ecosystems in a lowland region of Eastern Germany (Diptera: Chironomidae). Journal of Insect Conservation 4: 79–91.CrossRefGoogle Scholar
  30. Petchey, O. L., T. McPhearson, T. M. Casey & P. J. Morin, 1999. Environmental warming alters food-web structure and ecosystem function. Nature 402: 69–72.CrossRefGoogle Scholar
  31. Quinlan, R., M. S. V. Douglas & J. P. Smol, 2005. Food web changes in arctic ecosystems related to climate warming. Global Change Biology 11: 1381–1386.CrossRefGoogle Scholar
  32. Rossaro, B., 1991. Chironomids and water temperature. Aquatic Insects 2: 87–98.CrossRefGoogle Scholar
  33. Ruess, L., A. Michelsen & S. Jonasson, 1999. Simulated climate change in subarctic soils: responses in nematode species composition and dominance structure. Nematology 1: 513–526.CrossRefGoogle Scholar
  34. Schindler, D. W., 1997. Widespread effects of climatic warming on freshwater ecosystems in North America. Hydrological Processes 11: 1043–1067.CrossRefGoogle Scholar
  35. Schindler, D. W., 2001. The cumulative effects of climatic warming and other human stresses on Canadian freshwaters in the new millennium. Canadian Journal of Fisheries and Aquatic Sciences 58: 18–29.CrossRefGoogle Scholar
  36. StatSoft, Inc., 2001. STATISTICA for Windows [Computer program manual]. Tulsa, OK: StatSoft, Inc., 2300 East 14th Street, Tulsa, OK 74104, WEB: http://www.statsoft.com.
  37. Stauffer, D. & H. Arndt, 2005. Simulation and experiment of extinction or adaptation of biological species after temperature changes. International Journal of Modern Physics C 16: 389–392.CrossRefGoogle Scholar
  38. Storey, R. G. & D. D. Williams, 2004. Spatial responses of hyporheic invertebrates to seasonal changes in environmental parameters. Freshwater Biology 49: 1468–1486.CrossRefGoogle Scholar
  39. Strayer, D. L., S. E. May, P. Nielsen, W. Wollheim & S. Hausam, 1997. Oxygen, organic matter, and sediment granulometry as controls on hyporheic animal communities. Archiv für Hydrobiologie 140: 131–144.Google Scholar
  40. Sweeney, B. W., 1984. Factors influencing life history patterns of aquatic insects. In Resh, V. H. & D. M. Rosenberg (eds), The ecology of aquatic insects. Praeger, New York, New York, USA: 56–100.Google Scholar
  41. Sweeney, B. W. & R. L. Vannote, 1978. Size variation and the distribution of hemimetabolous aquatic insects: two thermal equilibrium hypotheses. Science 200: 444–446.PubMedCrossRefGoogle Scholar
  42. Sweeney, B. W., J. K. Jackson, J. D. Newbold & D. H. Funk, 1992. Climate change and the life histories and biogeography of aquatic insects in Eastern North America. In Firth, P. & S. G. Fisher (eds), Global Climate Change and Freshwater Ecosystems. Springer-Verlag, New York, New York, USA: 143–176.Google Scholar
  43. Triska, F. J., J. H. Duff & F. J. Avanzino, 1993. The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial-aquatic interface. Hydrobiologia 251: 167–184.CrossRefGoogle Scholar
  44. Van der Kamp, G., 1995. The hydrogeology of springs in relation to the biodiversity of spring fauna: a review. Journal of the Kansas Entomological Society 68: 4–17.Google Scholar
  45. Vannote, R. L. & B. W. Sweeney, 1980. Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. The American Naturalist 115: 667–695.CrossRefGoogle Scholar
  46. Vitousek, P. M., 1994. Beyond global warming: ecology and global change. Ecology 75: 1861–1876.CrossRefGoogle Scholar
  47. Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climatic change. Canadian Journal of Fisheries and Aquatic Sciences 48: 975–987.Google Scholar
  48. Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. M. Fromentin, O. Hoegh-Guldberg & F. Bairlein, 2002. Ecological responses to recent climate change. Nature 416: 389–395.PubMedCrossRefGoogle Scholar
  49. Ward, J. V. & J. A. Stanford, 1982. Thermal responses in the evolutionary ecology of aquatic insects. Annual Review of Entomology 27: 97–117.CrossRefGoogle Scholar
  50. Wiederholm, T., 1983. Chironomidae of the Holarctic Region: Keys and Diagnoses, Part 1–larvae. Entomologica Scandinavica Suppl, Motala 457p.Google Scholar
  51. Williams, D. D., 1991. The spring as an interface between groundwater and lotic faunas and as a tool in assessing groundwater quality. Verhein International Verein Limnolgie 24: 1621–1624.Google Scholar
  52. Williams, D. D. & H. B. N. Hynes, 1974. The occurrence of benthos deep in the substratum of a stream. Freshwater Biology 4: 233–256.CrossRefGoogle Scholar
  53. Williams, D. D. & N. E. Williams, 1996. Springs and spring faunas in Canada. Crunoecia 5: 13–24.Google Scholar
  54. Williams, D. D. & N. E. Williams, 1998. Invertebrate communities from freshwater springs: What can they contribute to pure and applied ecology? In Botosaneanu, L. (ed.), Studies in Crenobiology. The biology of springs, springbrooks. Backhuys Publish, Leiden: 251–261.Google Scholar
  55. Winder, M. & D. E. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Guillaume Tixier
    • 1
  • Kevin P. Wilson
    • 1
  • D. Dudley Williams
    • 1
  1. 1.Department of Biological Sciences, Surface and Groundwater Ecology Research GroupUniversity of Toronto at ScarboroughScarboroughCanada

Personalised recommendations