Advertisement

Hydrobiologia

, Volume 621, Issue 1, pp 1–19 | Cite as

Use and misuse in the application of the phytoplankton functional classification: a critical review with updates

  • Judit Padisák
  • Luciane O. CrossettiEmail author
  • Luigi Naselli-Flores
Review paper

Abstract

Since its publication, the article ‘Towards a functional classification of the freshwater phytoplankton’ (Reynolds et al., J Plankton Res 24: 417–428, 2002), has attracted the attention of dozens of phytoplankton ecologists worldwide. These numerous applications of the functional classification to describe phytoplankton patterns in various aquatic ecosystems allowed the recognition of some uncertain features of this concept originating from various reasons. In this article, we attempt to facilitate the application of the functional classification, by providing a detailed description of the typical misplacements and by modifying some of the original habitat templates and species allocations. Furthermore, we discuss in this review those coda that were additionally described after the publication of the original article, and attempt giving an overview, as complete as possible, of the state of art.

Keywords

Functional groups Codon Phytoplankton Water Framework Directive 

Notes

Acknowledgement

This work was supported by the Hungarian National Science Foundation (OTKA No. K 75552).

Supplementary material

10750_2008_9645_MOESM1_ESM.doc (662 kb)
MOESM1 (DOC 663 kb)

References

  1. Acuña, P., I. Vila & V. H. Marín, 2008. Short-term responses of phytoplankton to nutrient enrichment and planktivorous fish predation in a temperate South American mesotrophic reservoir. Hydrobiologia 600: 131–138.CrossRefGoogle Scholar
  2. Albay, M. & R. Akçaalan, 2003. Factors influencing the phytoplankton steady state assemblages in a drinking-water reservoir (Ömerli reservoir, Istanbul). Hydrobiologia 502: 85–95.CrossRefGoogle Scholar
  3. Allende, L. & I. Izaguirre, 2003. The role of physical stability on the establishment of steady states in the phytoplankton community of two Maritime Antarctic lakes. Hydrobiologia 502: 211–224.CrossRefGoogle Scholar
  4. Alves-de-Souza, C., M. Menezes & V. Huszar, 2006. Phytoplankton composition and functional groups in a tropical humic coastal lagoon, Brazil. Acta Botanica Brasliensis 20: 701–708.Google Scholar
  5. Anneville, O., S. Gammeter & D. Straile, 2005. Phosphorus decrease and climate variability: Mediators of synchrony in phytoplankton changes among European peri-alpine lakes. Freshwater Biology 50: 1731–1746.CrossRefGoogle Scholar
  6. Antenucci, J. P., A. Ghadouani, M. A. Burford & J. R. Romero, 2005. The long-term effect of artificial destratification on phytoplankton species composition in a subtropical reservoir. Freshwater Biology 50: 1081–1093.CrossRefGoogle Scholar
  7. Babanazarova, O. V. & O. A. Lyashenko, 2007. Inferring long-term changes in the physical–chemical environment of the shallow, enriched Lake Nero from statistical and functional analyses of its phytoplankton. Journal of Plankton Research 29: 747–756.CrossRefGoogle Scholar
  8. Barone, R. & L. Naselli-Flores, 2003. Distribution and seasonal dynamics of Cryptomonads in Sicilian water bodies. Hydrobiologia 502: 325–329.CrossRefGoogle Scholar
  9. Becker, V., V. L. M. Huszar, L. Naselli-Flores & J. Padisák, 2008. Phytoplankton equilibrium phases during thermal stratification in a deep subtropical water supply reservoir. Freshwater Biology 53: 952–963.CrossRefGoogle Scholar
  10. Borges, P. A. F., S. Train & L. C. Rodrigues, 2008. Spatial and temporal variation of phytoplankton in two subtropical Brazilian reservoirs. Hydrobiologia 607: 63–74.CrossRefGoogle Scholar
  11. Borics, G., G. Várbíró, I. Grigorszky, E. Krasznai, S. Szabó & K. T. Kiss, 2007. A new evaluation technique of potamo-plankton for the assessemnt of the ecological status of rivers. Large Rivers, 17. Archiv für Hydrobiologie Supplement 161: 465–486.Google Scholar
  12. Bovo-Scomparin, V. M. & S. Train, 2008. Long-term variability of the phytoplankton community in an isolated floodplain lake of the Ivinhema River State Park, Brazil. Hydrobiologia 610: 331–344.CrossRefGoogle Scholar
  13. Bouvy, M., S. M. Nascimento, R. J. R. Molica & A. Ferreira, 2003. Limnological features in Tapacurá reservoir (northeast Brazil) during a severe drought. Hydrobiologia 493: 115–130.CrossRefGoogle Scholar
  14. Burford, M. A. & M. J. O’Donohue, 2006. A comparison of phytoplankton community assemblages in artificially and naturally mixed subtropical water reservoirs. Freshwater Biology 51: 2143–2153.CrossRefGoogle Scholar
  15. Callieri, C., E. Caravati, G. Morabito & A. Oggioni, 2006. The unicellular freshwater cyanobacterium Synechococcus and mixotrophic flagellates: Evidence for a functional association in an oligotrophic, subalpine lake. Freshwater Biology 51: 263–273.CrossRefGoogle Scholar
  16. Çelik, K. & T. Ongun, 2008. Spatial and temporal dynamics of the steady-state phytoplankton assemblages in a temperate shallow hypertrophic lake (Lake Manyas, Turkey). Limnology 9: 115–123.CrossRefGoogle Scholar
  17. Crossetti, L. O. & C. E. M. Bicudo, 2005. Structural and functional phytoplankton responses to nutrient impoverishment in mesocosms placed in a shallow eutrophic reservoir (Garças Pond), São Paulo, Brazil. Hydrobiologia 541: 71–85.CrossRefGoogle Scholar
  18. Crossetti, L. O. & C. E. M. Bicudo, 2008a. Phytoplankton as a monitoring tool in a tropical urban shallow reservoir (Garças Pond): The assemblage index application. Hydrobiologia 610: 161–173.CrossRefGoogle Scholar
  19. Crossetti, L. O. & C. E. M. Bicudo, 2008b. Adaptations in phytoplankton life strategies to imposed change in a shallow urban tropical eutrophic reservoir, Garças Reservoir, over 8 years. Hydrobiologia 614: 91–105.CrossRefGoogle Scholar
  20. da Silva, C. A., S. Train & L. C. Rodrigues, 2005. Phytoplankton assemblages in a Brazilian subtropical cascading reservoir system. Hydrobiologia 537: 99–109.CrossRefGoogle Scholar
  21. Devercelli, M., 2006. Phytoplankton of the middle Parana River during an anomalous hydrological period: A morphological and functional approach. Hydrobiologia 563: 465–478.CrossRefGoogle Scholar
  22. Dokulil, M. T. & K. Teubner, 2003. Steady state phytoplankton assemblages during thermal stratification in deep alpine lakes. Do they occur? Hydrobiologia 502: 65–72.CrossRefGoogle Scholar
  23. EC Parliament and Council, 2000. Directive of the European Parliament and of the Council 2000/60/EC establishing a framework for community action in the field of water policy. European Commission PE-CONS 3639/1/100 Rev 1, Luxembourg.Google Scholar
  24. Fazio, A. & I. O’Farrell, 2005. Pytoplankton and water quality in a shallow lake: a response to secondary salinization (Argentina). Wetlands 25: 531–541.CrossRefGoogle Scholar
  25. Fietz, S., G. Kobanova, L. Ismets’eva & A. Nicklisch, 2005. Regional, vertical and seasonal distribution of phytoplankton and photosynthetic pigments in Lake Baikal. Journal of Plankton Research 27: 793–810.CrossRefGoogle Scholar
  26. Findlay, D. L., M. J. Paterson, L. L. Hendzel Jr. & H. J. Kling, 2005. Factors influencing Gonyostomum semen blooms in a small boreal reservoir lake. Hydrobiologia 533: 243–252.CrossRefGoogle Scholar
  27. Fonseca, B. M. & C. E. M. Bicudo, 2008. Phytoplankton seasonal variation in a shallow stratified eutrophic reservoir (Garcas Pond, Brazil). Hydrobiologia 600: 267–282.CrossRefGoogle Scholar
  28. Gurbuz, H., E. Kivrak, S. Soyupak & S. V. Yerli, 2003. Predicting dominant phytoplankton quantities in a reservoir by using neural networks. Hydrobiologia 504: 133–141.CrossRefGoogle Scholar
  29. Hajnal, É. & J. Padisák, 2008. Analysis of long-term ecological status of Lake Balaton based on the ALMOBAL phytoplankton database. Hydrobiologia 599: 227–237.CrossRefGoogle Scholar
  30. Huszar, V. L. & C. S. Reynolds, 1997. Phytoplankton periodicity and sequences of dominance in an Amazonian flood-plain lake (Lago Batata, Parã, Brazil): Responses to gradual environmental change. Hydrobiologia 346: 169–181.CrossRefGoogle Scholar
  31. Huszar, V. L. M., L. H. S. Silva, M. Marinho, P. Domingos & C. Sant’Anna, 2000. Cyanoprokaryote assemblages in eight productive tropical Brazilian waters. Hydrobiologia 424: 67–77.CrossRefGoogle Scholar
  32. Huszar, V., C. Kruk & N. Caraco, 2003. Steady state of phytoplankton assemblage of phytoplankton in four temperate lakes (NE USA). Hydrobiologia 502: 97–109.CrossRefGoogle Scholar
  33. Komárková, J. & R. Tavera, 2003. Steady state of phytoplankton assemblage in the tropical Lake Catemaco (Mexico). Hydrobiologia 502: 187–196.CrossRefGoogle Scholar
  34. Kozhov, M., 1963. Lake Baikal and its Life. Dr. W. Junk Press, The Hague.Google Scholar
  35. Kruk, C., N. Mazzeo, G. Lacerot & C. S. Reynolds, 2002. Classification schemes for phytoplankton: A local validation of a functional approach to the analysis of species temporal replacement. Journal of Plankton Research 24: 901–912.CrossRefGoogle Scholar
  36. Leitão, M., S. M. Morata, S. Rodriguez & J. P. Vergon, 2003. The effect of perturbations on phytoplankton assemblages in a deep reservoir (Vouglans, France). Hydrobiologia 502: 73–83.CrossRefGoogle Scholar
  37. Lopes, M. R. M., C. E. M. Bicudo & M. C. Ferragut, 2005. Short term spatial and temporal variation of phytoplankton in a shallow tropical oligotrophic reservoir, southeast Brazil. Hydrobiologia 542: 235–247.CrossRefGoogle Scholar
  38. Marinho, M. M. & V. L. M. Huszar, 2002. Nutrient availability and physical conditions as controlling factors of phytoplankton composition and biomass in a tropical reservoir (Southeastern Brazil). Archiv für Hydrobiologie 153: 443–468.Google Scholar
  39. Mazzeo, N., L. Rodríguez-Gallego, C. Kruk, M. Meerhoff, J. Gorga, G. Lacerot, F. Quintans, M. Loureiro, D. Larrea Jr. & F. García-Rodríguez, 2003. Effects of Egeria densa Planch. Beds on a shallow lake without piscivorous fish. Hydrobiologia 506–509: 591–602.CrossRefGoogle Scholar
  40. McIntire, C. D., G. L. Larson & R. E. Truitt, 2007. Seasonal and interannual variability in the taxonomic composition and production dynamics of hytoplankton assemblages in Crater Lake, Oregon. Hydrobiologia 574: 179–204.CrossRefGoogle Scholar
  41. Melo, S. & V. L. M. Huszar, 2000. Phytoplankton in an Amazonian floo-plain lake (Lago Batata, Brasil): Diel variation and species strategies. Journal of Plankton Research 22(1): 63–76.CrossRefGoogle Scholar
  42. Mischke, U. & B. Nixdorf, 2003. Equilibrium phase conditions in shallow German lakes: How Cyanoprokaryota species establish a steady state phase in late summer. Hydrobiologia 502: 123–132.CrossRefGoogle Scholar
  43. Mohamed, Z. A., 2006. First report of toxic Cylindrospermopsis raciborskii and Raphidiopsis mediterranea (Cyanoprokaryota) in Egyptian fresh waters. FEMS Microbial Ecology 59: 749–761.CrossRefGoogle Scholar
  44. Morabito, G., A. Oggioni & P. Panzani, 2003. Phytoplankton assemblage at equilibrium in large and deep subalpine lakes: A case study from Lago Maggiore (N. Italy). Hydrobiologia 502: 37–48.CrossRefGoogle Scholar
  45. Moura, A. N., M. C. Bittencourt-Oliveira, Ê. W. Dantas & J. D. Toledo Arruda Neto, 2007. Phytoplanktonic associations: A tool to understanding dominance events in a tropical Brazilian reservoir. Acta Botanica Brasiliensis 21: 641–648.Google Scholar
  46. Moustaka-Gouni, M., E. Vardaka & E. Tryfon, 2007. Phytoplankton species succession in a shallow Mediterranean lake (L. Kastoria, Greece): Steady-state dominance of Limnothrix redekei, Microcystis aeruginosa and Cylindrospermopsis raciborskii. Hydrobiologia 575: 129–140.CrossRefGoogle Scholar
  47. Nabout, J. C., I. S. Nogueira & I. G. Oliveira, 2006. Phytoplankton community of floodplain lakes of the Araguaia River, Brazil, in the rainy and dry seasons. Journal of Plankton Research 28(2): 181–193.CrossRefGoogle Scholar
  48. Naselli-Flores, L. & R. Barone, 2003. Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis ecomorphological variability in maintaining an apparent equilibrium. Hydrobiologia 502: 133–143.CrossRefGoogle Scholar
  49. Naselli-Flores, L. & R. Barone, 2005. Water-level fluctuations in Mediterranean reservoirs: Setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 548: 85–99.CrossRefGoogle Scholar
  50. Naselli-Flores, L. & R. Barone, 2007. Pluriannual morphological variability of phytoplankton in a highly productive Mediterranean reservoir (Lake Arancio, Southwestern Sicily). Hydrobiologia 578: 87–95.CrossRefGoogle Scholar
  51. Naselli-Flores, L., J. Padisák & M. Albay, 2007. Shape and size in phytoplankton ecology: do they matter? Hydrobiologia 578: 157–161.CrossRefGoogle Scholar
  52. Niesel, V. E. Hoehn, R. Sudbrack, H. Willmitzer & I. Chorus, 2007. The occurrence of the Dinophyte species Gymnodinium uberrimum and Peridinium willei in German reservoirs. Journal of Plankton Research 29: 347–357.Google Scholar
  53. Nixdorf, B., U. Mischke & J. Rücker, 2003. Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes—An approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia 502: 111–121.CrossRefGoogle Scholar
  54. O’Farrell, I., R. Sinistro, I. Izaguirre & F. Unrein, 2003. Do steady state assemblages occur in shallow lentic environments from wetlands? Hydrobiologia 502: 197–209.CrossRefGoogle Scholar
  55. Padisák, J. & M. Dokulil, 1994. Meroplankton dynamics in a saline, turbulent, turbid shallow lake (Neusiedlersee, Austria and Hungary). Hydrobiologia 289: 23–42.CrossRefGoogle Scholar
  56. Padisák, J. & C. S. Reynolds, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophicatioon and restoration measures, with special reference to cyanoprokaryotes. Hydrobiologia 384: 41–53.CrossRefGoogle Scholar
  57. Padisák, J., L. Krienitz, R. Koschel & J. Nedoma, 1997. Deep layer picoplankton maximum in the oligotrophic Lake Stechlin, Germany: Origin, activity, development and erosion. European Journal of Phycology 32: 403–416.CrossRefGoogle Scholar
  58. Padisák, J., F. A. R. Barbosa, R. Koschel & L. Krienitz, 2003a. Deep layer cyanoprokaryota maxima are constitutional features of lakes: Examples from temperate and tropical regions. Archiv für Hydrobiologie, Special Issues, Advances in Limnology 58: 175–199.Google Scholar
  59. Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003b. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.CrossRefGoogle Scholar
  60. Padisák, J., I. Grigorszky, G. Borics & É. Soróczki-Pintér, 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: The assemblage index. Hydrobiologia 553: 1–14.CrossRefGoogle Scholar
  61. Pinto, M. P., L. Allende & I. O’Farrell, 2007. Influence of free-floating plants on the structure of a natural phytoplankton assemblage: An experimental approach. Journal of Plankton Research 29: 47–56.CrossRefGoogle Scholar
  62. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  63. Romo, S. & M. J. Villena, 2005. Phytoplankton strategies and diversity under different nutrient levels and planktivorous fish densities in a shallow Mediterranean lake. Journal of Plankton Research 27: 1273–1286.CrossRefGoogle Scholar
  64. Salmaso, N., 2002. Ecological patterns of phytoplankton assemblages in Lake Garda: Seasonal, spatial and historical features. Journal of Limnology 61: 95–115.Google Scholar
  65. Salmaso, N. & J. Padisák, 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.CrossRefGoogle Scholar
  66. Sarmento, H. & J.-P. Descy, 2008. Use of marker pigments and functional groups for assessing the status of phytoplankton assemblages in lakes. Journal of Applied Phycology. doi: 10.1007/s10811-007-9294-0.
  67. Sarmento, H., M. Isumbisho & J.-P. Descy, 2006. Phytoplankton ecology of Lake Kivu (east Africa). Journal of Plankton Research 28: 815–829.CrossRefGoogle Scholar
  68. Scheffler, W. & J. Padisák, 2000. Stephanocostis chantaicus (Bacillariophyceae): Morphology and population dynamics of a rare centric diatom growing in winter under ice in the oligotrophic Lake Stechlin, Germany. Archiv für Hydrobiologie 98/Algological Studies 133: 49–69.Google Scholar
  69. Soares, M. C. S., V. L. M. Huszar & F. Roland, 2007. Phytoplankton dynamics in two tropical rivers with different degrees of human impact (Southeast Brazil). River Research and Applications 23: 698–714.CrossRefGoogle Scholar
  70. Souza, M. B. G., C. F. A. Barros, F. A. R. Barbosa, É. Hajnal & J. Padisák, 2008. The role of atelomixis in phytoplankton assemblages’ replacement in Dom Helvécio Lake, South-East Brazil. Hidrobiologa 607: 211–224.CrossRefGoogle Scholar
  71. Sthapit, E., A. Ochs, C. Paul & V. Zimba, 2008. Spatial and temporal variation in phytoplankton community structure in a southeastern U.S. reservoir determined by HPLC and light microscopy. Hydrobiologia 600: 215–228.CrossRefGoogle Scholar
  72. Stoyneva, M. P., 2003. Steady-state phytoplankton assemblages in shallow Bulgarian wetlands. Hydrobiologia 502: 169–176.CrossRefGoogle Scholar
  73. Stoyneva, M. P., J.-P. Descy & W. Vyverman, 2007. Green algae in Lake Tanganyika: Is morphological variation a response to seasonal changes? Hydrobiologia 578: 7–16.CrossRefGoogle Scholar
  74. Tilman, P., 1982. Resource Competition and Community Structure. Princeton University Press, Princeton.Google Scholar
  75. Townsend, S., 2006. Hydraulic phases, persistent stratification, and phytoplankton in a tropical floodplain lake (Mary River, Northern Australia). Hydrobiologia 556: 163–179.CrossRefGoogle Scholar
  76. Vardaka, E., M. Moustaka-Gouni, C. M. Cook & T. Lanaras, 2005. Cyanobacterial blooms and water quality in Greek waterbodies. Journal of Applied Phycology 17: 391–401.CrossRefGoogle Scholar
  77. Vörös, L., P. Gulyás & P. F. Németh, 1991. Occurrence, dynamics and production of picoplankton in Hungarian shallow lakes. Internationale Revue der gesamten Hydrobiologie 76: 617–629.CrossRefGoogle Scholar
  78. Wilhelm, S. & R. Adrian, 2008. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshwater Biology 53: 226–237.CrossRefGoogle Scholar
  79. Willén, E., 2003. Dominance patterns of planktonic algae in Swedish forest lakes. Hydrobiologia 502: 315–324.CrossRefGoogle Scholar
  80. Yéprémian, C., M. F. Gugger, E. Briand, C. Arnaud, C. Berger, C. Quiblier & C. Bernard, 2007. Microcystin ecotypes in a perennial Planktothrix agardhii bloom. Water Research 41: 4446–4456.PubMedCrossRefGoogle Scholar
  81. Zhang, X., P. Xie, F. Z. Chen, S. X. Li & J. H., 2007. Driving forces shaping phytoplankton assemblages in two subtropical plateau lakes with contrasting trophic status. Freshwater Biology 52: 1463–1475.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Judit Padisák
    • 1
  • Luciane O. Crossetti
    • 1
    Email author
  • Luigi Naselli-Flores
    • 2
  1. 1.Limnológia Tanszék, Pannon EgyetemVeszprémHungary
  2. 2.Dipartimento di Scienze BotanicheUniversità di PalermoPalermoItaly

Personalised recommendations