, Volume 620, Issue 1, pp 135–147 | Cite as

Should only live diatoms be used in the bioassessment of small mountain streams?

  • Nadezhda GillettEmail author
  • Yangdong Pan
  • Christian Parker
Primary research paper


It is unclear whether differentiating live and dead diatoms would enhance the accuracy and precision of diatom-based stream bioassessment. We collected benthic diatom samples from 25 stream sites in the Northern Oregon Coast ecoregion. We counted live diatoms (cells with visible chloroplasts) and then compared the counts with those generated using the conventional method (clean counts). Non-metric multidimensional scaling (NMDS) showed that the diatom assemblages generated from the two counts were overall similar. The relationships between the two diatom assemblages (summarized as NMDS ordination axes) and the environmental variables were also similar. Both assemblages correlated well with in-stream physical habitat conditions (e.g., channel dimensions, substrate types, and canopy cover). The conventional diatom method provides taxonomic confidence while the live diatom count offers ecological reliability. Both methods can be used in bioassessment based on specific assessment objectives.


Live diatoms Bioassessment Headwater streams Multivariate analysis 



We are grateful to Patrick Edwards, Miguel Estrada, Hsiao-Hsuan Lin, Jeff Meacham, Kalina Manoylov, and two anonymous reviewers who provided valuable feedback and critical review of earlier versions of the manuscript. This project was supported by the EPA-PSU cooperative agreement for WEMAP periphyton analysis (EPA R-82902601-0).


  1. Alverson, A. J., K. M. Manoylov & R. J. Stevenson, 2003. Laboratory sources of error for algal community attributes during sample preparation and counting. Journal of Applied Phycology 15: 357–369.CrossRefGoogle Scholar
  2. Barnese, L. E. & R. L. Lowe, 1992. Effects of substrate, light, and benthic invertebrates on algal drift in small streams. Journal of the North American Benthological Society 11: 49–59.CrossRefGoogle Scholar
  3. Cao, Y., C. P. Hawkins, J. Olson & M. A. Kosterman, 2007. Modeling natural environmental gradients improves the accuracy and precision of diatom-based indicators. Journal of the North American Benthological Society 26: 566–585.CrossRefGoogle Scholar
  4. Charles, D. F., C. Knowles & R. S. Davis, 2002. Protocols for the analysis of algal samples collected as part of the U.S. Geological Survey National Water-Quality Assessment Program. Report No. 02-06, Patrick Center for Environmental Research, The Academy of Natural Sciences, Philadelphia, PA.
  5. Chessman, B., I. Growns, J. Curray & N. Plunkett-Cole, 1999. Predicting diatom communities at the genus level for the rapid biological assessment of rivers. Freshwater Biology 41: 317–331.CrossRefGoogle Scholar
  6. CLAMS (Coastal landscape analysis and modeling study), 1996.
  7. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  8. Clarke, S. E., D. White & A. L. Schaedel, 1991. Oregon, USA, Ecological regions and subregions for water quality management. Environmental Management 15: 847–856.CrossRefGoogle Scholar
  9. Clesceri, L. S., A. E. Greenberg & A. D. Eaton, 1998. Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association, Washington, D.C.Google Scholar
  10. Cox, E. J., 1996. Identification of Freshwater Diatoms from Live Material. Chapman & Hall, London, UK.Google Scholar
  11. Cox, E. J., 1998. A rationale and some suggestions for developing rapid biomonitoring techniques using identification of live diatoms. In Proceedings of the 15th International Diatom Symposium: 43–50.Google Scholar
  12. Gower, J. C., 1971. Statistical methods of comparing different multivariate analyses of the same data. In Hodson, F. R., D. G. Kendall & P. Tautu (eds), Mathematics in the Archaeological and Historical Sciences. Edinburgh University Press, Edinburgh: 138–149.Google Scholar
  13. Hassan, G. S., M. A. Espinosa & F. I. Isla, 2008. Fidelity of dead diatom assemblages in estuarine sediments: how much environmental information is preserved? Palaios 23: 112–120.Google Scholar
  14. Hawkins, C. P., 2006. Quantifying biological integrity by taxonomic completeness: its utility in regional and global assessments. Ecological Applications 16: 1277–1294.PubMedCrossRefGoogle Scholar
  15. Jackson, D. A., 1995. PROTEST: a PROcrustean Randomization TEST of community environment concordance. Ecoscience 2: 297–303.Google Scholar
  16. Jackson, P. L. & A. J. Kimerling, 1993. Atlas of the Pacific Northwest. OSU Press, Corvallis, OR.Google Scholar
  17. Kaufmann, P. R, P. Levine, E. G. Robison, C. Seeliger & D. V. Peck, 1999. Quantifying Physical Habitat in Wadeable Streams. EPA/620/R-99/003. U.S. Environmental Protection Agency, Washington, D.C.Google Scholar
  18. Kelly, M., 2001. Use of similarity measures for quality control of benthic diatom samples. Water Resources 35: 2784–2788.Google Scholar
  19. Krammer, K. & H. Lange-Bertalot, 1997a. Bacillariophyceae. Naviculaceae. In Ettl, J., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, 2/1. Spectrum Akademischer Verlag, Heidelberg-Berlin: 1–876.Google Scholar
  20. Krammer, K. & H. Lange-Bertalot, 1997b. Bacillariophyceae. Bacillariaceae, Epithemiaceae, Surirellaceae. In Ettl, J., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, 2/2. Spectrum Akademischer Verlag, Heidelberg-Berlin: 1–610.Google Scholar
  21. Krammer, K. & H. Lange-Bertalot, 2000. Bacillariophyceae. Centrales, Fragilariaceae, Eunotiaceae. In Ettl, J., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, 2/3. Spectrum Akademischer Verlag, Heidelberg-Berlin: 1–598.Google Scholar
  22. Krammer, K. & H. Lange-Bertalot, 2004. Bacillariophyceae. Achnanthaceae. Kritische Ergänzungen zu Achnanthes s. l., Navicula s. str., Gomphonema. In Ettl, J., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, 2/4. Spectrum Akademischer Verlag, Heidelberg-Berlin: 1–468.Google Scholar
  23. Lazorchak, J. M., D. J. Klemm & D. V. Peck, 1998. Environmental Monitoring and Assessment Program – Surface Waters: Field Operations and Methods for Measuring the Ecological Condition of Wadeable Streams. EPA/620/R-94/004F. U.S. Environmental Protection Agency, Washington, D.C.Google Scholar
  24. Naiman, R. J. & R. E. Bilby, 1998. River ecology and management in the Pacific Coastal ecoregion. In Naiman, R. J. & R. E. Bilby (eds), River Ecology and Management: Lessons from the Pacific Coastal ecoregion. Springer-Verlag, New York: 1–10.Google Scholar
  25. Oksanen, J., R. Kindt, P. Legendre, B. O’Hara, G. L. Simpson & M. H. H. Stevens 2008. Vegan: Community Ecology Package. R Package Version 1.11-2.,
  26. Omernik, J. M., 1987. Map supplement: ecoregions of the conterminous United States. Annals of the Association of American Geographers 77: 118–125.CrossRefGoogle Scholar
  27. Oppenheim, D. R., 1987. Frequency distribution studies of epipelic diatoms along an intertidal shore. Helgoland Marine Research 41: 139–148.Google Scholar
  28. Owen, B. B., M. Afzal & W. R. Cody, 1979. Distinguishing between live and dead diatoms in periphyton communities. In Wetzel, R. L. (ed.), Methods and Measurements of Periphyton Communities: A Review. American Society for Testing and Materials, STP 690: 70–76.Google Scholar
  29. Patrick, R. & C. W. Reimer, 1966. The Diatoms of the United States, Vol. 1. Monograph #13 of the Academy of Natural Sciences of Philadelphia.Google Scholar
  30. Patrick, R. & C. W. Reimer, 1975. The Diatoms of the United States, Vol. 2. Monograph #13 of the Academy of Natural Sciences of Philadelphia.Google Scholar
  31. Patrick, R., M. H. Hohn & J. H. Wallace, 1954. A new method for determining the pattern of the diatom flora. Notulae Naturae of the Academy of Natural Sciences of Philadelphia 259: 1–12.Google Scholar
  32. Peres-Neto, P. R. & D. A. Jackson, 2001. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129: 169–178.CrossRefGoogle Scholar
  33. Peterson, C. G., 1996. Mechanisms of lotic microalgal colonization following space-clearing disturbances acting at different spatial scales. Oikos 77: 417–435.CrossRefGoogle Scholar
  34. Potapova, M. G. & D. F. Charles, 2005. Choice of substrate in algae-based water quality assessment. Journal of the North American Benthological Society 24: 415–427.CrossRefGoogle Scholar
  35. Pryfogle, P. A., 1975. Seasonal distribution of periphytic diatom communities of Tymochtee Creek. In Proceedings of the Sandusky River Basin Symposium. International Joint Commission Canada-U.S.A. Great Lakes Water Quality Agreement 1972: 153–173.Google Scholar
  36. Pryfogle, P. A. & R. L. Lowe, 1979. Sampling and interpretation of epilithic lotic diatom communities. In Wetzel, R. L. (ed.), Methods and Measurements of Periphyton Communities: A Review. American Society for Testing and Materials, STP 690: 77–89.Google Scholar
  37. Prygiel, J., P. Carpentier, S. Almeida, M. Coste, J.-C. Druart, L. Ector, D. Guillard, M.-A. Honoré, R. Iserentant, P. Ledeganck, C. Lalanne-Cassou, C. Lesniak, I. Mercier, P. Moncaut, M. Nazart, N. Nouchet, F. Peres, V. Peeters, F. Rimet, A. Rumeau, S. Sabater, F. Straub, M. Torrisi, L. Tudesque, B. V. de Vijver, H. Vidal, J. Vizinet & N. Zydek, 2002. Determination of the biological diatom index (IBD NF T 90-354): results of an intercomparison exercise. Journal of Applied Phycology 14: 27–39.CrossRefGoogle Scholar
  38. R Development Core Team, 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  39. Round, F. E., 1998. A problem in algal ecology: contamination of habitats from adjacent communities. Cryptogamie Algologie 19: 49–55.Google Scholar
  40. Sawai, Y., 2001. Distribution of living and dead diatoms in tidal wetlands of northern Japan: relations to taphonomy. Palaeogeography, Palaeoclimatology, Palaeoecology 173: 125–141.CrossRefGoogle Scholar
  41. Stevenson, R. J. & Y. Pan, 1999. Assessing environmental conditions in rivers and streams with diatoms. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms Applications for the Environmental and Earth Sciences. Cambridge University Press, New York: 11–40.Google Scholar
  42. Thomas, D. P., 1979. Some problems connected with the use of cleared cells and relative proportions of species in diatom ecology. Beiheft für Nova Hedwigia 64: 503–511.Google Scholar
  43. US EPA, 1983. Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-020. U.S. Environmental Protection Agency, Cincinnati, OH.Google Scholar
  44. Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, 4th ed. Springer, New York.Google Scholar
  45. Walker, G. W. & N. S. MacLeod, 1991. Geologic map of Oregon. US Geological Survey, Scale 1:500,000.
  46. Weilhoefer, C. L. & Y. Pan, 2007. A comparison of periphyton assemblages generated by two sampling protocols. Journal of the North American Benthological Society 26: 308–318.CrossRefGoogle Scholar
  47. Wilson, C. J. & R. W. Holmes, 1981. The ecological importance of distinguishing between living and dead diatoms in estuarine sediments. European Journal of Phycology 16: 345–349.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Nadezhda Gillett
    • 1
    Email author
  • Yangdong Pan
    • 1
  • Christian Parker
    • 1
  1. 1.Environmental Sciences and ManagementPortland State UniversityPortlandUSA

Personalised recommendations