, Volume 619, Issue 1, pp 155–166 | Cite as

Effects of nutrients and dissolved organic matter on the response of phytoplankton to ultraviolet radiation: experimental comparison in spring versus summer

  • Caren E. Scott
  • Jasmine E. SarosEmail author
  • Craig E. Williamson
  • Courtney R. Salm
  • Stephen C. Peters
  • David L. Mitchell
Primary research paper


The effects of nutrients and dissolved organic matter (DOM) on the response of phytoplankton community structure to ultraviolet radiation (UVR) was studied using natural phytoplankton assemblages from Lake Giles (Northeastern Pennsylvania), a temperate, oligotrophic, highly UVR-transparent lake. Microcosm experiments were conducted in 1-l bags in the spring and summer. A factorial design was used, with two UVR treatments (ambient and reduced), two nutrient treatments (control with no nutrients added, and nitrogen and phosphorus addition together), and two DOM treatments (control of 1 mg l−1 and doubled). In April, UVR affected the overall phytoplankton community structure, causing a shift in the dominant species. Significant interactive effects of UVR × nutrients and UVR × DOM were found on total phytoplankton biovolumes. In July, all taxa responded positively to the N + P addition, and were affected differentially by the UVR treatments. The initial communities varied in April and July, but Synura sp. and Chroomonas sp. were present in both seasons. Synura sp. responded positively to the addition of DOM in April and the reduction of UVR in July. Chroomonas sp. responded positively to the reduction of UVR in April and the addition of nutrients in July. The differential sensitivity of these two species suggests that changing environmental factors between spring and summer promoted differences in the relative importance of UVR in changing phytoplankton community structure.


Phytoplankton Ultraviolet radiation Seasonal effects Nutrients 



We thank Patrick Neale of the Smithsonian Environmental Research Center for the incident UV data, and Jason Porter and Don Morris for supplying the DOC concentrate. We are grateful for the field assistance of Kristen Pitts, Jason Porter, Tim Guida, and Kirsten Kessler, and the lab assistance of Jason Veldboom. This research was supported by funding from the National Science Foundation (DEB-0210972 and DBI-0216204) and a graduate research grant from the University of Wisconsin-La Crosse.


  1. American Public Health Association (APHA), 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington, DC, APHA.Google Scholar
  2. Barbieri, E. S., V. E. Villafañe & E. W. Helbling, 2002. Experimental assessment of UV effects on temperate marine phytoplankton when exposed to variable radiation regimes. Limnology and Oceanography 47: 1648–1655.Google Scholar
  3. Cooke, S. L. & C. E. Williamson, 2006. Positive effects of UV radiation on a calanoid copepod in a transparent lake: do competition, predation or food availability play a role? Journal of Plankton Research 28: 171–179.CrossRefGoogle Scholar
  4. Davidson, A. T., H. J. Marchant & W. K. de la Mare, 1996. Natural UVB exposure changes the species composition of Antarctic phytoplankton in mixed culture. Aquatic Microbial Ecology 10: 299–305.CrossRefGoogle Scholar
  5. Doyle, S. A., J. E. Saros & C. E. Williamson, 2005. Interactive effects of temperature and nutrient limitation on the response of alpine phytoplankton growth to ultraviolet radiation. Limnology and Oceanography 50: 1362–1367.Google Scholar
  6. Fauchot, J., M. Gosselin, M. Levasseur, B. Mostajir, C. Belzile, S. Demers, S. Roy & P. Z. Villegas, 2000. Influence of UV-B radiation on nitrogen utilization by a natural assemblage of phytoplankton. Journal of Phycology 36: 484–496.CrossRefGoogle Scholar
  7. Fields, S. D. & R. G. Rhodes, 1991. Ingestion and retention of Chroomonas spp. (Cryptophyceae) by Gymnodinium acidotum (Dinophyceae). Journal of Phycology 27: 525–529.CrossRefGoogle Scholar
  8. Fouilland, E., M. Gosselin, B. Mostajir, M. Levasseur, J. Chanut, S. Demers & S. de Mora, 2003. Effects of ultraviolet-B radiation and vertical mixing on nitrogen uptake by a natural planktonic community shifting from nitrate to silicic acid deficiency. Limnology and Oceanography 48: 18–30.Google Scholar
  9. Gala, W. R. & J. P. Giesy, 1991. Effects of ultraviolet radiation on the primary production of natural phytoplankton assemblages in Lake Michigan. Ecotoxicology and Environmental Safety 22: 345–361.PubMedCrossRefGoogle Scholar
  10. Halac, S., M. Felip, L. Camarero, S. Sommaruga-Wögrath, R. Psenner, V. Catalan & R. Sommaruga, 1997. An in situ enclosure experiment to test the solar UVB impact on plankton in a high-altitude mountain lake. I. Lack of an effect on phytoplankton species composition and growth. Journal of Plankton Research 19: 1671–1686.CrossRefGoogle Scholar
  11. Helbling, E. W., B. E. Chalker, W. C. Dunlap, O. Holm-Hansen & V. E. Villafañe, 1996. Photoacclimation of Antarctic marine diatoms to solar ultraviolet radiation. Journal of Experimental Marine Biology and Ecology 204: 85–101.CrossRefGoogle Scholar
  12. Hiriart, V. P., B. M. Greenburg, S. J. Guildford & R. E. H. Smith, 2002. Effects of ultraviolet radiation on rates and size distribution of primary production by Lake Erie phytoplankton. Canadian Journal of Fisheries and Aquatic Science 59: 317–328.CrossRefGoogle Scholar
  13. Jansson, M., P. Blomqvist, A. Jonsson & A. K. Bergstrijm, 1996. Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Ortrasket. Limnology and Oceanography 41: 1552–1559.Google Scholar
  14. Jeffrey, S. W., H. S. MacTavish, W. C. Dunlap, M. Vesk & K. Goenewoud, 1999. Occurrence of UVA- and UVB-absorbing compounds in 152 species (206 strains) of marine microalgae. Marine Ecology Progress Series 189: 35–51.CrossRefGoogle Scholar
  15. Jones, L. W. & B. Kok, 1966. Photoinhibition of chloroplast reactions. I. Kinetics and action spectra. Plant Physiology 41: 1037–1043.PubMedCrossRefGoogle Scholar
  16. Karentz, D., J. E. Cleaver & D. L. Mitchell, 1991. Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. Journal of Phycology 27: 326–341.CrossRefGoogle Scholar
  17. Kodama, K. P., J. C. Lyons, P. A. Siver & A. Lott, 1997. A mineral magnetic and scaled-chrysophyte paleolimnological study of two northeastern Pennsylvania lakes: records of fly ash deposition, land-use change, and paleorainfall variation. Journal of Paleolimnology 17: 173–189.CrossRefGoogle Scholar
  18. Laurion, I., A. Lami & R. Sommaruga, 2002. Distribution of mycosporine-like amino acids and photoprotective carotenoids among freshwater phytoplankton assemblages. Aquatic Microbial Ecology 26: 283–294.CrossRefGoogle Scholar
  19. Litchman, E., P. J. Neale & A. T. Banaszak, 2002. Increased sensitivity to ultraviolet radiation in nitrogen-limited dinoflagellates: photoprotection and repair. Limnology and Oceanography 47: 86–94.Google Scholar
  20. MacFadyen, E. J., C. E. Williamson, G. Grad, M. Lowery, W. H. Jeffrey & D. L. Mitchell, 2004. Molecular response to climate change: temperature dependence of UV-induced DNA damage and repair in the freshwater crustacean Daphnia pulicaria. Global Change Biology 10: 408–416.CrossRefGoogle Scholar
  21. Mitchell, D. L., 1996. Radioimmunoassay of DNA damaged by ultraviolet light. In Pfeifer, G. (ed.), Technologies for Detection of DNA Damage and Mutations. Plenum Publishing Corp., New York: 73–85.Google Scholar
  22. Mitchell, D. L., 2006. Quantification of DNA photoproducts in mammalian cell DNA using radioimmunoassay. In Henderson, D. S. (ed.), Methods in Molecular Biology, DNA Repair Protocols, Vol. 2. The Humana Press Inc., Totowa, NJ: 239–249.CrossRefGoogle Scholar
  23. Morris, D. P., H. Zagarese, C. E. Williamson, E. G. Balseiro, B. R. Hargreaves, B. Modenutti, R. Moeller & C. Queimalinos, 1995. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnology and Oceanography 40: 1381–1391.Google Scholar
  24. Nilawati, J., B. M. Greenburg & R. E. H. Smith, 1997. Influence of ultraviolet radiation on growth and photosynthesis of two cold ocean diatoms. Journal of Phycology 33: 215–224.CrossRefGoogle Scholar
  25. Noorudeen, A. M. & G. Kulandaivelu, 1982. On the possible site of inhibition of photosynthetic electron transport by ultraviolet-B (UV-B) radiation. Physiologia Plantarum 55: 161–166.CrossRefGoogle Scholar
  26. Pakker, H., R. S. T. Martins, P. Boelen, A. G. J. Buma, O. Nikaido & A. M. Breeman, 2000. Effects of temperature on the photoreactivation of ultraviolet-B-induced DNA damage in Palmaria palmata (Rhodophyta). Journal of Phycology 36: 334–361.CrossRefGoogle Scholar
  27. Roos, J. C. & W. F. Vincent, 1998. Temperature dependence of UV radiation effects on Antarctic cyanobacteria. Journal of Phycology 34: 118–125.CrossRefGoogle Scholar
  28. Roy, S., B. Mohovic, S. M. F. Gianesella, I. Schloss, M. Ferrario & S. Demers, 2006. Effects of enhanced UV-B on pigment-based phytoplankton biomass and composition of mesocosm-enclosed natural marine communities from three latitudes. Photochemistry and Photobiology 82: 909–922.PubMedCrossRefGoogle Scholar
  29. Schindler, D. W., S. E. Bayley, B. R. Parker, K. G. Beaty, D. R. Cruikshank, E. J. Fee, E. U. Schindler & M. P. Stainton, 1996. The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnology and Oceanography 41: 1004–1017.Google Scholar
  30. Scully, N. M., L. J. Tranvik & W. J. Cooper, 2003. Photochemical effects on the interaction of enzymes and dissolved organic matter in natural waters. Limnology and Oceanography 48: 1818–1824.Google Scholar
  31. Sinha, R. P. & D. P. Häder, 2002. UV-induced DNA damage and repair: a review. Photochemical and Photobiological Sciences 1: 225–236.PubMedCrossRefGoogle Scholar
  32. SPSS, 1999. SPSS Base 10.0 for Windows User’s Guide. SPSS Inc., Chicago.Google Scholar
  33. Tartarotti, B. & R. Sommaruga, 2006. Seasonal and ontogenetic changes of mycosporine-like amino acids in planktonic organisms from an alpine lake. Limnology and Oceanography 51: 1530–1541.Google Scholar
  34. van Donk, E., B. A. Faafeng, H. J. de Lange & D. O. Hessen, 2001. Differential sensitivity to natural ultraviolet radiation among phytoplankton species in Arctic lakes (Spitsbergen, Norway). Plant Ecology 154: 249–259.Google Scholar
  35. Villafañe, V. E., E. W. Helbling, O. Holm-Hansen & B. E. Chalker, 1995. Acclimatization of Antarctic natural phytoplankton assemblages when exposed to solar ultraviolet radiation. Journal of Plankton Research 17: 2295–2306.CrossRefGoogle Scholar
  36. Wehr, J. D. & R. G. Sheath, 2003. Freshwater Algae of North America: Ecology and Classification. Academic Press, San Diego.Google Scholar
  37. Williamson, C. E., D. P. Morris, M. L. Pace & O. G. Olson, 1999. Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnology and Oceanography 44: 795–803.CrossRefGoogle Scholar
  38. Williamson, C. E., P. J. Neale, G. Grad, H. J. de Lange & B. R. Hargreaves, 2001a. Beneficial and detrimental effects of UV on aquatic organisms: implications of spectral variation. Ecological Applications 11: 1843–1857.CrossRefGoogle Scholar
  39. Williamson, C. E., O. G. Olson, S. E. Lott, N. D. Walker, D. R. Engstrom & B. R. Hargreaves, 2001b. Ultraviolet radiation and zooplankton community structure following deglaciation in Glacier Bay, Alaska. Ecology 82: 1748–1760.Google Scholar
  40. Xenopoulos, M. A. & P. C. Frost, 2003. UV radiation, phosphorus, and their combined effects on the taxonomic composition of phytoplankton in a boreal lake. Journal of Phycology 39: 291–302.Google Scholar
  41. Xenopoulos, M. A., P. C. Frost & J. J. Elser, 2002. Joint effects of UV radiation and phosphorus supply on algal growth rate and elemental composition. Ecology 83: 423–435.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Caren E. Scott
    • 1
  • Jasmine E. Saros
    • 2
    Email author
  • Craig E. Williamson
    • 3
  • Courtney R. Salm
    • 2
  • Stephen C. Peters
    • 4
  • David L. Mitchell
    • 5
  1. 1.Department of Biology and River Studies CenterUniversity of Wisconsin - La CrosseLa CrosseUSA
  2. 2.School of Biology and Ecology, Climate Change InstituteUniversity of MaineOronoUSA
  3. 3.Department of ZoologyMiami UniversityOxfordUSA
  4. 4.Department of Earth and Environmental SciencesLehigh UniversityBethlehemUSA
  5. 5.Department of CarcinogenesisThe University of Texas MD Anderson Cancer CenterSmithvilleUSA

Personalised recommendations